El producto mixto de los vectores , y se representa por [, , ] y es igual al producto escalar del primer vector por el producto vectorial de los otros dos.

El producto mixto de tres vectores equivale al desarrollo de un determinante que tiene por filas las coordenadas de dichos vectores respecto a una base ortonormal.

Ejemplos

Calcular el producto mixto de los vectores:

Volumen del paralelepípedo

Geométricamente, el valor absoluto del producto mixto representa el volumen del paralelepípedo cuyas aristas son tres vectores que concurren en un mismo vértice.

Hallar el volumen del paralelepípedo formado por los vectores:

Volumen de un tetraedro

El volumen de un tetraedro es igual a 1/6 del producto mixto, en valor absoluto.

Obtener el volumen del tetraedro cuyos vértices son los puntos A(3, 2, 1), B(1, 2, 4), C(4, 0, 3) y D(1, 1, 7).

Propiedades del producto mixto

1.

El producto mixto no varía si se permutan circularmente sus factores, pero cambia de signo si éstos se trasponen.

2.

Si tres vectores son linealmente dependientes, es decir, si son coplanarios, producto mixto vale 0.

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (No Ratings Yet)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido