Ejercicio nº 4

Probar que la ecuación 1 + 2x + 3x² + 4x³ = 0 tiene una única solución.

Vamos a demostrarlo por reducción al absurdo.

Si la función tuviera dos raíces distintas x1 y x2, siendo x1< x2 , tendríamos que:

f(x1) = f(x2) = 0

Y como la función es continua y derivable por ser una función polinómica, podemos aplicar el teorema del Rolle, que diría que existe un c  (x1, x2) tal que f' (c) = 0.

f' (x) = 2 + 6x + 12x² f' (x) = 2 (1+ 3x + 6x²).

Pero f' (x) ≠ 0, no admite soluciones reales porque el discrimínante es negativo:

Δ = 9 − 24 < 0.

Como la derivada no se anula en ningún valor está en contradicción con el teorema de Rolle, por lo que la hipótesis de que existen dos raíces es falsa.

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (No Ratings Yet)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido