Ejercicio nº 3

Determinar los valores del parámetro b, para qué las tangentes a la curva de la función f(x) = b²x³ + bx² + 3x + 9 en los puntos de abscisas x = 1, x = 2 sean paralelas.

Para que sean paralelas se tiene que cumplir que las derivadas en x = 1 y x = 2 sean iguales.

f'(1) = f'(2)

f'(x) = 3b²x² + 2bx + 3

f'(1) = 3b² + 2b + 3

f'(2) = 12b² + 4b + 3

3b² + 2b + 3 = 12b² + 4b + 3

9b² + 2b = 0

b = 0 b = −2/9

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (No Ratings Yet)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido