Ejercicio nº 3

Sean f y g dos funciones continuas en [a, b] y tales que f(a) > g(a) y f(b) < g(b). Demostrar que ∃ c ∈ (a, b) tal que f(c) = g(c).

Sea la función h definida por h(x) = f(x) − g(x).

Por ser continuas f y g en [a, b], la función h también lo es.

f(a) > g(a) h(a) = f(a) − g(a) > 0

f(b) < g(b) h(b) = f(b) − g(b) < 0.

Por cumplirse las tres propiedades anteriores según el teorema de Bolzano, existe c ∈ (a, b) tal que:

h(c) = 0 f(c) − g(c) = 0 f(c) = g(c)

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (No Ratings Yet)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido