La regla de tres es un procedimiento para calcular el valor de una cantidad comparándola con otras tres o más cantidades conocidas.
Regla de tres simple y directa
Se aplica une regla de 3 cuando dadas dos cantidades correspondientes a magnitudes directamente proporcionales, hay que calcular la cantidad de una de estas magnitudes correspondiente a una cantidad dada de la otra magnitud.

La regla de tres directa la aplicaremos cuando entre las magnitudes se establecen las relaciones:
A más 
A menos 
Ejemplos de regla de 3
Un automóvil recorre 240 km en 3 horas. ¿Cuántos kilómetros habrá recorrido en 2 horas?
Son magnitudes directamente proporcionales, ya que a menos horas recorrerá menos kilómetros.
240 km
x km 

Ana compra 5 kg de patatas, si 2 kg cuestan 0.80 €, ¿cuánto pagará Ana?
Son magnitudes directamente proporcionales, ya que a más kilos, más euros.
2 kg
5 kg 

Regla de tres simple inversa
Consiste en que dadas dos cantidades correspondientes a magnitudes inversamente proporcionales, calcular la cantidad de una de estas magnitudes correspondiente a una cantidad dada de la otra magnitud.

La regla de tres inversa la aplicaremos cuando entre las magnitudes se establecen las relaciones:
A más 
A menos 
Ejemplo
Un grifo que mana 18 l de agua por minuto tarda 14 horas en llenar un depósito. ¿Cuánto tardaría si su caudal fuera de 7 l por minuto?
Son magnitudes inversamente proporcionales, ya que a menos litros por minuto tardará más en llenar el depósito.
18 l/min 
7 l/min 

3 obreros construyen un muro en 12 horas, ¿cuánto tardarán en construirlo 6 obreros?
Son magnitudes inversamente proporcionales, ya que a más obreros tardarán menos horas.
3 obreros 
6 obreros 

La regla de tres compuesta se emplea cuando se relacionan tres o más magnitudes, de modo que a partir de las relaciones establecidas entre las magnitudes conocidas obtenemos la desconocida.
Una regla de 3 compuesta se compone de varias reglas de 3 simples aplicadas sucesivamente.
Como entre las magnitudes se pueden establecer relaciones de proporcionalidad directa o inversa, podemos distinguir tres casos de regla de tres compuesta:
Regla de tres compuesta directa

Ejemplo
Nueve grifos abiertos durante 10 horas diarias han consumido una cantidad de agua por valor de 20 €. Averiguar el precio del vertido de 15 grifos abiertos 12 horas durante los mismos días.
A más grifos, más euros 
A más horas, más euros 
9 grifos 

15 grifos 



Regla de tres compuesta inversa

Ejemplo
5 obreros trabajando, trabajando 6 horas diarias construyen un muro en 2 días. ¿Cuánto tardarán 4 obreros trabajando 7 horas diarias?
A menos obreros, más días
A más horas, menos días
5 obreros 

4 obreros 


Regla de tres compuesta mixta

Ejemplo
Si 8 obreros realizan en 9 días trabajando a razón de 6 horas por día un muro de 30 m. ¿Cuántos días necesitarán 10 obreros trabajando 8 horas diarias para realizar los 50 m de muro que faltan?
A más obreros, menos días
A más horas, menos días
A más metros, más días 
8 obreros 


10 obreros 



11 obreros labran un campo rectangular de 220 m de largo y 48 de ancho en 6 días. ¿Cuántos obreros serán necesarios para labrar otro campo análogo de 300 m de largo por 56 m de ancho en cinco días?
220 · 48 m² 

300 · 56 m² 


Seis grifos, tardan 10 horas en llenar un depósito de 400 m³ de capacidad. ¿Cuántas horas tardarán cuatro grifos en llenar 2 depósitos de 500 m³ cada uno?
6 grifos 


4 grifos 



