La Combinatoria estudia las ordenaciones o agrupaciones de un determinado número de elementos.

En todo problema combinatorio hay varios conceptos claves que debemos distinguir:

1. Población

Es el conjunto de elementos que estamos estudiando. Denominaremos con m al número de elementos de este conjunto.

2. Muestra

Es un subconjunto de la población. Denominaremos con n al número de elementos que componen la muestra.

Los diferentes tipos de muestra vienen determinados por dos aspectos:

Orden

Es decir, si es importante que los elementos de la muestra aparezcan ordenados o no.

Repetición

La posibilidad de repetición o no de los elementos.

Factorial de un número natural

Es el producto de los “n” factores consecutivos desde “n” hasta 1. El factorial de un número se denota por n!.

Explicaciones y ejemplos de combinatoria - 1

Explicaciones y ejemplos de combinatoria - 2

Explicaciones y ejemplos de combinatoria - 3

Variaciones

Variaciones ordinarias

Se llama variaciones ordinarias de m elementos tomados de n en n (m ≥ n) a los distintos grupos formados por n elementos de forma que:

No entran todos los elementos.

importa el orden.

No se repiten los elementos.

Explicaciones y ejemplos de combinatoria - 4

Explicaciones y ejemplos de combinatoria - 5

También podemos calcular las variaciones mediante factoriales:

Explicaciones y ejemplos de combinatoria - 6

Explicaciones y ejemplos de combinatoria - 7

Las variaciones se denotan por Explicaciones y ejemplos de combinatoria - 8

Variaciones con repetición

Se llamann variaciones con repetición de m elementos tomados de n en n a los distintos grupos formados por n elementos de manera que:

No entran todos los elementos si m > n. pueden entrar todos los elementos si m ≤ n

importa el orden.

se repiten los elementos.

Explicaciones y ejemplos de combinatoria - 9

Explicaciones y ejemplos de combinatoria - 10

Permutaciones

Se llama permutaciones de m elementos (m = n) a las diferentes agrupaciones de esos m elementos de forma que:

entran todos los elementos.

importa el orden.

No se repiten los elementos.

Explicaciones y ejemplos de combinatoria - 11

Explicaciones y ejemplos de combinatoria - 12

Permutaciones circulares

Es un caso particular de las permutaciones.

Se utilizan cuando los elementos se han de ordenar "en círculo", (por ejemplo, los comensales en una mesa), de modo que el primer elemento que "se sitúe" en la muestra determina el principio y el final de muestra.

Explicaciones y ejemplos de combinatoria - 13

PC7= (7 − 1)! = 6! = 6 · 5 · 4 · 3 · 2 · 1 = 720

Permutaciones con repetición

Permutaciones con repetición de m elementos donde el primer elemento se repite a veces , el segundo b veces , el tercero c veces, ...(m = a + b + c + ... = n) son los distintos grupos que pueden formarse con esos m elementos de forma que :

entran todos los elementos.

importa el orden.

se repiten los elementos.

Explicaciones y ejemplos de combinatoria - 14

Explicaciones y ejemplos de combinatoria - 15

Combinaciones

Se llama combinaciones de m elementos tomados de n en n (m ≥ n) a todas las agrupaciones posibles que pueden hacerse con los m elementos de forma que:

No entran todos los elementos.

No importa el orden.

No se repiten los elementos.

Explicaciones y ejemplos de combinatoria - 16

Explicaciones y ejemplos de combinatoria - 17

También podemos calcular las combinaciones mediante factoriales:

Explicaciones y ejemplos de combinatoria - 18

Las combinaciones se denotan por Explicaciones y ejemplos de combinatoria - 19

Combinaciones con repetición

Las combinaciones con repetición de m elementos tomados de n en n (m ≥ n), son los distintos grupos formados por n elementos de manera que:

No entran todos los elementos.

No importa el orden.

se repiten los elementos.

Explicaciones y ejemplos de combinatoria - 20

Explicaciones y ejemplos de combinatoria - 21

Números combinatorios

El número  Explicaciones y ejemplos de combinatoria - 22  se llama también número combinatorio. Se representa por Explicaciones y ejemplos de combinatoria - 23 y se lee "m sobre n".

Explicaciones y ejemplos de combinatoria - 24

Explicaciones y ejemplos de combinatoria - 25

Propiedades de los números combinatorios

1.

Explicaciones y ejemplos de combinatoria - 26

2.

Explicaciones y ejemplos de combinatoria - 27

Los números de este tipo se llaman complementarios.

3.

Explicaciones y ejemplos de combinatoria - 28

Explicaciones y ejemplos de combinatoria - 29

El triángulo de números combinatorios de Tartaglia o de Pascal (debido a que fue este matemático quien lo popularizó) es un triángulo de números enteros, infinito y simétrico, del que podemos ver sus primeras líneas:

Explicaciones y ejemplos de combinatoria - 30

Propiedades del Triángulo de Pascal o de Tartaglia

1.

La primera fila corresponde a los números combinatorios de 1, el número superior es un 1, la segunda de 2, la tercera de 3 y así sucesivamente.

2.

Todas la filas empiezan y acaban en 1.

Explicaciones y ejemplos de combinatoria - 31

3.

Todas las filas son simétricas.

Explicaciones y ejemplos de combinatoria - 32

4.

Cada número se obtiene sumando los dos que están situados sobre él.

Aplicando estas propiedades podemos escribir el triángulo de Pascal:

Explicaciones y ejemplos de combinatoria - 33

El triángulo de Pascal o de Tartaglia nos será muy útil para calcular los coefecientes del binomio de Newton.