Si una función es continua en el intervalo [a, b] y k es un número comprendido entre los valores f(a) y f(b), entonces existe algún c en (a, b) tal que f(c) = k

Si Observamos el dibujo podemos definir la propiedad de Darboux de este otro modo:
Si una función es continua en el intervalo [a, b] la función alcanza en este intervalo todos los valores comprendidos entre f(a) y f(b).
Probar que la función f(x) = x(sen x +1) toma el valor 2.
La función es continua en toda 
Tomamos el intervalo 


Por tanto existe un c 
