Ejercicio 1

Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante dispone para la confección de 750 m de tejido de algodón y 1000 m de tejido de poliéster. Cada pantalón precisa 1 m de algodón y 2 m de poliéster. Para cada chaqueta se necesitan 1.5 m de algodón y 1 m de poliéster. El precio del pantalón se fija en 50 € y el de la chaqueta en 40 €. ¿Qué número de pantalones y chaquetas debe suministrar el fabricante a los almacenes para que estos consigan una venta máxima?

Ejercicio 2

Una compañía fabrica y venden dos modelos de lámpara L1 y L2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L1 y de 30 minutos para el L2; y un trabajo de máquina para L1 y de 10 minutos para L2. Se dispone para el trabajo manual de 100 horas al mes y para la máquina 80 horas al mes. Sabiendo que el beneficio por unidad es de 15 y 10 euros para L1 y L2, respectivamente, planificar la producción para obtener el máximo beneficio.

Ejercicio 3

Una empresa de transportes tiene dos tipos de camiones, los del tipo A con un espacio refrigerado de 20 m³ y un espacio no refrigerado de 40 m³. Los del tipo B, con igual cubicaje total, al 50% de refrigerado y no refrigerado. La contratan para el transporte de 3 000 m³ de producto que necesita refrigeración y 4 000 m³ de otro que no la necesita. El coste por kilómetro de un camión del tipo A es de 30 € y el B de 40 €. ¿Cuántos camiones de cada tipo ha de utilizar para que el coste total sea mínimo?

Ejercicio 4

En una granja de pollos se da una dieta, para engordar, con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado sólo se encuentra dos clases de compuestos: el tipo X con una composición de una unidad de A y 5 de B, y el otro tipo, Y, con una composición de cinco unidades de A y una de B. El precio del tipo X es de 10 euros y del tipo Y es de 30 €. ¿Qué cantidades se han de comprar de cada tipo para cubrir las necesidades con un coste mínimo?

Ejercicio 5

Con el comienzo del curso se va a lanzar unas ofertas de material escolar. Unos almacenes quieren ofrecer 600 cuadernos, 500 carpetas y 400 bolígrafos para la oferta, empaquetándolo de dos formas distintas; en el primer bloque pondrá 2 cuadernos, 1 carpeta y 2 bolígrafos; en el segundo, pondrán 3 cuadernos, 1 carpeta y 1 bolígrafo. Los precios de cada paquete serán 6.5 y 7 €, respectivamente. ¿Cuántos paquetes le conviene poner de cada tipo para obtener el máximo beneficio?

Ejercicio 6

Unos grandes almacenes desean liquidar 200 camisas y 100 pantalones de la temporada anterior. Para ello lanzan, dos ofertas, A y B. La oferta A consiste en un lote de una camisa y un pantalón, que se venden a 30 €; la oferta B consiste en un lote de tres camisas y un pantalón, que se vende a 50 €. No se desea ofrecer menos de 20 lotes de la oferta A ni menos de 10 de la B. ¿Cuántos lotes ha de vender de cada tipo para maximizar la ganancia?

Ejercicio 7

Se dispone de 600 g de un determinado fármaco para elaborar pastillas grandes y pequeñas. Las grandes pesan 40 g y las pequeñas 30 g. Se necesitan al menos tres pastillas grandes, y al menos el doble de pequeñas que de las grandes. Cada pastilla grande proporciona un beneficio de 2 € y la pequeña de 1 €. ¿Cuántas pastillas se han de elaborar de cada clase para que el beneficio sea máximo?

Ejercicio 8

Una escuela prepara una excursión para 400 alumnos. La empresa de transporte tiene 8 autobuses de 40 plazas y 10 de 50 plazas, pero sólo dispone de 9 conductores. El alquiler de un autocar grande cuesta 800 € y el de uno pequeño 600 €. Calcular cuántos autobuses de cada tipo hay que utilizar para que la excursión resulte lo más económica posible para la escuela.

Ejercicio 1 resuelto

Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante dispone para la confección de 750 m de tejido de algodón y 1000 m de tejido de poliéster. Cada pantalón precisa 1 m de algodón y 2 m de poliéster. Para cada chaqueta se necesitan 1.5 m de algodón y 1 m de poliéster. El precio del pantalón se fija en 50 € y el de la chaqueta en 40 €. ¿Qué número de pantalones y chaquetas debe suministrar el fabricante a los almacenes para que estos consigan una venta máxima?

 1  Elección de las incógnitas.

x = número de pantalones

y = número de chaquetas

 2  Función objetivo

f(x,y)= 50x + 40y

 3  Restricciones

Para escribir las restricciones vamos a ayudarnos de una tabla:

pantaloneschaquetasdisponible
algodón11,5750
poliéster211000

x + 1.5y ≤ 750 2x+3y≤1500

2x + y ≤ 1000

Como el número de pantalones y chaquetas son números naturales, tendremos dos restricciones más:

x ≥ 0

y ≥ 0

 4  Hallar el conjunto de soluciones factibles

Tenemos que representar gráficamente las restricciones.

Al ser x ≥ 0 e y ≥ 0, trabajaremos en el primer cuadrante.

Representamos las rectas, a partir de sus puntos de corte con los ejes.

Resolvemos gráficamente la inecuación: 2x + 3y ≤ 1500, para ello tomamos un punto del plano, por ejemplo el (0,0).

2·0 + 3·0 ≤ 1 500

Como 0 ≤ 1 500 entonces el punto (0,0) se encuentra en el semiplano donde se cumple la desigualdad.

De modo análogo resolvemos 2x + y ≤ 1000.

2·0 + 0 ≤ 1 00

La zona de intersección de las soluciones de las inecuaciones sería la solución al sistema de inecuaciones, que constituye el conjunto de las soluciones factibles.

 5  Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

La solución óptima, si es única, se encuentra en un vértice del recinto. estos son las soluciones a los sistemas:

2x + 3y = 1500; x = 0 (0, 500)

2x + y = 1000; y = 0 (500, 0)

2x + 3y =1500; 2x + y = 1000 (375, 250)

 6  Calcular el valor de la función objetivo

En la función objetivo sustituimos cada uno de los vértices.

f(x, y) = 50x + 40y

f(0, 500) = 50 · 0 + 40 · 500 = 20000 €

f(500, 0) = 50 · 500 + 40 · 0 = 25000 €

f(375, 250) = 50 · 375 + 40 · 250 = 28750 €    Máximo

La solución óptima es fabricar 375 pantalones y 250 chaquetas para obtener un beneficio de 28750 €.

Ejercicio 2 resuelto

Una compañía fabrica y venden dos modelos de lámpara L1 y L2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L1 y de 30 minutos para el L2; y un trabajo de máquina para L1 y de 10 minutos para L2. Se dispone para el trabajo manual de 100 horas al mes y para la máquina 80 horas al mes. Sabiendo que el beneficio por unidad es de 15 y 10 euros para L1 y L2, respectivamente, planificar la producción para obtener el máximo beneficio.

 1  Elección de las incógnitas.

x = nº de lámparas L1

y = nº de lámparas L2

 2  Función objetivo

f(x, y) = 15x + 10y

 3  Restricciones

Pasamos los tiempos a horas

20 min = 1/3 h

30 min = 1/2 h

10 min = 1/6 h

Para escribir las restricciones vamos a ayudarnos de una tabla:

L1L2Tiempo
Manual1/31/2100
Máquina1/31/680

1/3x + 1/2y ≤ 100

1/3x + 1/6y ≤ 80

Como el número de lámparas son números naturales, tendremos dos restricciones más:

x ≥ 0

y ≥ 0

 4  Hallar el conjunto de soluciones factibles

Tenemos que representar gráficamente las restricciones.

Al ser x ≥ 0 e y ≥ 0, trabajaremos en el primer cuadrante.

Representamos las rectas, a partir de sus puntos de corte con los ejes.

Resolvemos gráficamente la inecuación: 1/3 x + 1/2 y ≤ 100; para ello tomamos un punto del plano, por ejemplo el (0,0).

1/3·0 + 1/2·0 ≤ 100

1/3·0 + 1/6·0 ≤ 80

La zona de intersección de las soluciones de las inecuaciones sería la solución al sistema de inecuaciones, que constituye el conjunto de las soluciones factibles.

 5  Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

La solución óptima si es única se encuentra en un vértice del recinto. estos son las soluciones a los sistemas:

1/3x + 1/2y = 100; x = 0 (0, 200)

1/3x + 1/6y = 80; y = 0(240, 0) 

1/3x + 1/2y = 100; 1/3x + 1/6y = 80(210, 60) 

 6  Calcular el valor de la función objetivo

En la función objetivo sustituimos cada uno de los vértices.

f(x, y) = 15x + 10y

f(0, 200) = 15·0 + 10·200 = 2 000 €

f(240, 0 ) = 15·240 + 10·0 = 3 600 €

f(210, 60) = 15·210 + 10·60 = 3 750 €    Máximo

La solución óptima es fabricar 210 del modelo L1 y 60 del modelo L1 para obtener un beneficio de 3 750 € .

Ejercicio 3 resuelto

Una empresa de transportes tiene dos tipos de camiones, los del tipo A con un espacio refrigerado de 20 m³ y un espacio no refrigerado de 40 m³. Los del tipo B, con igual cubicaje total, al 50% de refrigerado y no refrigerado. La contratan para el transporte de 3 000 m³ de producto que necesita refrigeración y 4 000 m³ de otro que no la necesita. El coste por kilómetro de un camión del tipo A es de 30 € y el B de 40 €. ¿Cuántos camiones de cada tipo ha de utilizar para que el coste total sea mínimo?

 1  Elección de las incógnitas.

x = camiones de tipo A

y = camiones de tipo B

 2  Función objetivo

f(x,y) = 30x + 40y

 3  Restricciones

ABTotal
Refrigerado20303 000
No refrigerado40304 000

20x + 30y ≥ 3 000

40x + 30y ≥ 4 000

x ≥ 0

y ≥ 0

 4  Hallar el conjunto de soluciones factibles

 5  Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

 6  Calcular el valor de la función objetivo

f(0, 400/3) = 30 · 0 + 40 · 400/3 = 5 333.332

f(150, 0) = 30 · 150 + 40 · 0 = 4 500

Como x e y han de ser números naturales redondeamos el valor de y.

f(50, 67) = 30 · 50 + 40 · 67 = 4180

Por defecto, veamos que valor toma la x para y = 66 en la ecuación 20x + 30y = 3000 que pertenece al recinto de las soluciones factibles; x = 51. Obtenemos un número natural

f(51, 66) = 30 · 51 + 40 · 66 = 4170

El coste mínimo son 4 170 € para A = 51 y B = 66.

Ejercicio 4 resuelto

En una granja de pollos se da una dieta, para engordar, con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado sólo se encuentra dos clases de compuestos: el tipo X con una composición de una unidad de A y 5 de B, y el otro tipo, Y, con una composición de cinco unidades de A y una de B. El precio del tipo X es de 10 euros y del tipo Y es de 30 €. ¿Qué cantidades se han de comprar de cada tipo para cubrir las necesidades con un coste mínimo?

 1  Elección de las incógnitas.

x = X

y = Y

 2  Función objetivo

f(x,y) = 10x + 30y

 3  Restricciones

XYMínimo
A1515
B5115

x + 5y ≥ 15

5x + y ≥ 15

x ≥ 0

y ≥ 0

 4  Hallar el conjunto de soluciones factibles

 5  Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

 6  Calcular el valor de la función objetivo

f(0, 15) = 10 · 0 + 30 · 15 = 450

f(15, 0) = 10 · 15 + 30 · 0 = 150

f(5/2, 5/2) = 10 · 5/2 + 30 · 5/2 = 100   Mínimo

El coste mínimo son 100 € para X = 5/2 e Y = 5/2.

Ejercicio 5 resuelto

Con el comienzo del curso se va a lanzar unas ofertas de material escolar. Unos almacenes quieren ofrecer 600 cuadernos, 500 carpetas y 400 bolígrafos para la oferta, empaquetándolo de dos formas distintas; en el primer bloque pondrá 2 cuadernos, 1 carpeta y 2 bolígrafos; en el segundo, pondrán 3 cuadernos, 1 carpeta y 1 bolígrafo. Los precios de cada paquete serán 6.5 y 7 €, respectivamente. ¿Cuántos paquetes le conviene poner de cada tipo para obtener el máximo beneficio?

 1  Elección de las incógnitas.

x = P1

y = P2

 2  Función objetivo

f(x, y) = 6.5x + 7y

 3  Restricciones

P1P2Disponibles
Cuadernos23600
Carpetas11500
Bolígrafos21400

2x + 3y ≤ 600

x + y ≤ 500

2x + y ≤ 400

x ≥ 0

y ≥ 0

 4  Hallar el conjunto de soluciones factibles

 5  Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

 6  Calcular el valor de la función objetivo

f(x,y) = 6.5 · 200 + 7 · 0 = 1300 €

f(x,y)= 6.5 · 0 + 7 · 200 = 1 400 €

f(x,y)= 6.5 · 150 + 7 · 100 = 1 675 €    Máximo

La solución óptima son 150 P1 y 100 P2 con la que se obtienen 1 675 €

Ejercicio 6 resuelto

Unos grandes almacenes desean liquidar 200 camisas y 100 pantalones de la temporada anterior. Para ello lanzan, dos ofertas, A y B. La oferta A consiste en un lote de una camisa y un pantalón, que se venden a 30 €; la oferta B consiste en un lote de tres camisas y un pantalón, que se vende a 50 €. No se desea ofrecer menos de 20 lotes de la oferta A ni menos de 10 de la B. ¿Cuántos lotes ha de vender de cada tipo para maximizar la ganancia?

 1  Elección de las incógnitas.

x = nº de lotes de A

y = nº de lotes de B

 2  Función objetivo

f(x, y) = 30x + 50y

 3  Restricciones

ABMínimo
Camisas13200
Pantalones11100

x + 3y ≤ 200

x + y ≤ 100

x ≥ 20

 y ≥ 10

 4  Hallar el conjunto de soluciones factibles

 5  Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

 6  Calcular el valor de la función objetivo

f(x, y) = 30 · 20 + 50 · 10 = 1100 €

f(x, y) = 30 · 90 + 50 · 10 = 3200 €

f(x, y) = 30 · 20 + 50 · 60 = 3600 €

f(x, y) = 30 · 50 + 50 · 50 = 4000 €    Máximo

Con 50 lotes de cada tipo se obtiene una ganancia máxima de 4000 €.

Ejercicio 7 resuelto

Se dispone de 600 g de un determinado fármaco para elaborar pastillas grandes y pequeñas. Las grandes pesan 40 g y las pequeñas 30 g. Se necesitan al menos tres pastillas grandes, y al menos el doble de pequeñas que de las grandes. Cada pastilla grande proporciona un beneficio de 2 € y la pequeña de 1 €. ¿Cuántas pastillas se han de elaborar de cada clase para que el beneficio sea máximo?

 1  Elección de las incógnitas.

x = Pastillas grandes

y = Pastillas pequeñas

 2  Función objetivo

f(x, y) = 2x + y

 3  Restricciones

40x + 30y ≤ 600

x ≥ 3

y ≥ 2x

x ≥ 0

y ≥ 0

 4  Hallar el conjunto de soluciones factibles

 5  Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

 6  Calcular el valor de la función objetivo

f(x, y) = 2 · 3 + 16 = 22 €

f(x, y) = 2 · 3 + 6 = 12 €

f(x, y) = 2 · 6 + 12 = 24 €    Máximo

El máximo beneficio es de 24 €, y se obtiene fabricando 6 pastillas grandes y 12 pequeñas.

Ejercicio 8 resuelto

Una escuela prepara una excursión para 400 alumnos. La empresa de transporte tiene 8 autobuses de 40 plazas y 10 de 50 plazas, pero sólo dispone de 9 conductores. El alquiler de un autocar grande cuesta 800 € y el de uno pequeño 600 €. Calcular cuántos autobuses de cada tipo hay que utilizar para que la excursión resulte lo más económica posible para la escuela.

 1  Elección de las incógnitas.

x = autobuses pequeños

y = autobuses grandes

 2  Función objetivo

f(x, y) = 600x + 800y

 3  Restricciones

40x + 50y ≥ 400

x + y ≤ 9

x ≥ 0

y ≥ 0

 4  Hallar el conjunto de soluciones factibles

 5  Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

 6  Calcular el valor de la función objetivo

f(0, 8) = 600 · 0 + 800 · 8 = 6 400 €

f(0, 9) = 600 · 0 + 800· 9 = 7 200 €

f(5, 4) = 600 · 5 + 800· 4 = 6 200 €    Mínimo

El coste mínimo es de 6 200 € , y se consigue 4 autobuses grandes y 5 pequeños .

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (8 votes, average: 4,88 out of 5)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido