Los/las mejores profesores/as de Matemáticas que están disponibles
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (72 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (56 opiniones)
Agustina
30€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Pedro
5
5 (134 opiniones)
Pedro
15€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (280 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (72 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (56 opiniones)
Agustina
30€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Pedro
5
5 (134 opiniones)
Pedro
15€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (280 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Vamos

Coeficiente de correlación lineal

El coeficiente de correlación lineal es el cociente entre la covarianza y el producto de las desviaciones típicas de ambas variables.

El coeficiente de correlación lineal se representa mediante la letra .

Propiedades

1 El coeficiente de correlación no varía al hacerlo la escala de medición.

Es decir, si expresamos la altura en metros o en centímetros el coeficiente de correlación no varía.

2 El signo del coeficiente de correlación es el mismo que el de la covarianza.

Si la covarianza es positiva, la correlación es directa.

Si la covarianza es negativa, la correlación es inversa.

Si la covarianza es nula, no existe correlación.

3 El coeficiente de correlación lineal es un número real comprendido entre y .

4 Si el coeficiente de correlación lineal toma valores cercanos a la correlación es fuerte e inversa, y será tanto más fuerte cuanto más se aproxime a .

5 Si el coeficiente de correlación lineal toma valores cercanos a la correlación es fuerte y directa, y será tanto más fuerte cuanto más se aproxime a .

6 Si el coeficiente de correlación lineal toma valores cercanos a , la correlación es débil.

7 Si ó , los puntos de la nube están sobre la recta creciente o decreciente. Entre ambas variables hay dependencia funcional.

Ejemplos

Ejemplo 1

Las notas de alumnos de una clase en Matemáticas y Física son las siguientes:

Hallar el coeficiente de correlación de la distribución e interpretarlo.

1 Añadimos a la tabla columnas con , y , respectivamente. El último renglón de la tabla se obtiene sumando los valores de cada columna:

2 Hallamos las medias aritméticas.

                   

3 Calculamos la covarianza.

4 Calculamos las  desviaciones típicas

5 Aplicamos la fórmula del coeficiente de correlación lineal.

Al ser el coeficiente de correlación positivo, la correlación es directa.

Como coeficiente de correlación está muy próximo a 1 la correlación es muy fuerte.

Ejemplo 2

Los valores de dos variables e se distribuyen según la tabla siguiente:

Determinar el coeficiente de correlación.

1 Convertimos la tabla de doble entrada en tabla simple.

                   

               

Al ser el coeficiente de correlación negativo, la correlación es inversa.

Como coeficiente de correlación está muy próximo a 0 la correlación es muy débil.

¿Te ha gustado este artículo? ¡Califícalo!

4,27 (63 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗