Intervalos característicos

P[μ - k < x < μ + k] = p

Hallar el intervalo característico de una distribución normal N(0, 1) correspondiente a la probabilidad p = 0.9.

El nivel de confianza (p) se designa mediante 1 - α.

El nivel de significación se designa mediante α.

El valor crítico (k) como z α/2 .

P(Z>z α/2) = α/2      P[-z α/2 < z < z α/2] = 1- α

Valores críticos

1 - αα/2z α/2
0.900.051.645
0.950.0251.96
0.990.0052.575

En una distribución N(μ, σ ) el intervalo característico correspondiente a una probabilidad p = 1 - α es:

(μ - z α/2 · σ , μ + z α/2 · σ )

1 - αα/2z α/2Intervalos característicos
0.900.051.645(μ - 1.645 · σ , μ + 1.645 · σ)
0.950.0251.96(μ - 1.96 · σ , μ + 1.96 · σ )
0.990.0052.575(μ - 2.575 · σ , μ + 2.575 · σ )
Superprof

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (3 votes, average: 3,67 out of 5)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido

Publicar un comentario

avatar
  Subscribe  
Notify of