Intervalos característicos

P[μ - k < x < μ + k] = p

Hallar el intervalo característico de una distribución normal N(0, 1) correspondiente a la probabilidad p = 0.9.

El nivel de confianza (p) se designa mediante 1 - α.

El nivel de significación se designa mediante α.

El valor crítico (k) como z α/2 .

P(Z>z α/2) = α/2      P[-z α/2 < z < z α/2] = 1- α

Valores críticos

1 - α α/2 z α/2
0.90 0.05 1.645
0.95 0.025 1.96
0.99 0.005 2.575

En una distribución N(μ, σ ) el intervalo característico correspondiente a una probabilidad p = 1 - α es:

(μ - z α/2 · σ , μ + z α/2 · σ )

1 - α α/2 z α/2 Intervalos característicos
0.90 0.05 1.645 (μ - 1.645 · σ , μ + 1.645 · σ)
0.95 0.025 1.96 (μ - 1.96 · σ , μ + 1.96 · σ )
0.99 0.005 2.575 (μ - 2.575 · σ , μ + 2.575 · σ )
¿Necesitas un/a profe de Matemáticas?

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) 3,67/5 - 3 voto(s)
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗