Los/las mejores profesores/as de Matemáticas que están disponibles
Propiedades de la matriz inversa
1
2
3
4
Cálculo por el método de Gauss
Sea una matriz cuadrada de orden
. Para calcular la matriz inversa de
, que denotaremos como
, seguiremos los siguientes pasos:
1 Construir una matriz del tipo , es decir,
está en la mitad izquierda de
y la matriz identidad
en la derecha.
Consideremos una matriz arbitraria:
La ampliamos con la matriz identidad de orden 3.
2 Utilizando el método Gauss vamos a transformar la mitad izquierda, , en la matriz identidad, que ahora está a la derecha, y la matriz que resulte en el lado derecho será la matriz inversa:
.

La matriz inversa es:
Apuntes es una plataforma dirigida al estudio y la práctica de las matemáticas a través de la teoría y ejercicios interactivos que ponemos a vuestra disposición. Esta información está disponible para todo aquel/aquella que quiera profundizar en el aprendizaje de esta ciencia. Será un placer ayudaros en caso de que tengáis dudas frente algún problema, sin embargo, no realizamos un ejercicio que nos presentéis de 0 sin que hayáis si quiera intentado resolverlo. Ánimo, todo esfuerzo tiene su recompensa.
Muchas gracias , me ayudan mucho con mi examen, solo tenia una duda, en el ejercicio 2 de Sistemas de ecuaciones con matrices, me sale que Y= 8/5, no se en que estoy fallando o creo que se confundieron de símbolo en el elemento de la fila 2 columna 1 de la matriz inversa , debería ser 2/5 y no -2/5.
Hola tienes toda la razón, una disculpa ya se corrigió el error.
Hola, gracias por esto, bien explicado. Por favor, me gustaría también ―pues vengo de las Humanidades― una historia de las matrices. Cómo se inventaron, por quién ; qué necesidad resolvían y no estaba bien cubierta antes. He leído que fueron importantes en aeronáutica. Enhorabuena. ¡Gracias!
Lo tendremos en consideración para nuestro blog 😊 Gracias por tu aporte. Un saludo.
Como resolver 1/2 AB EN MATRICES
2/8x-5y-8z=-10
5/7x-8y+10z=3/9
8x-3y+20z=11
Sean las matrices: M = [[3, – 5, – 2], [5, 2, – 3], [2, 0, 0]] ,N=[n 0 ] 1*2 ^ i cos n ij =[ matrix 2j-3;i= j matrix yR = [[5, 2, 3], [2, – 4, 4], [7, – 7, 3]] .
a) Determina por extensión la matriz N.
b) Calcule N ^ T – 2M*Y_2 – 4R si existe, donde es una matriz identidad de orden 3 * 3 , Calcule MN si existe