Resuelve los siguientes problemas utilizando el algoritmo de Euclides:

1

María prepara una cena especial para su familia. Ha hecho 56 canapés de queso y 40 de paté. Quiere repartir los canapés en el máximo número de platos posibles, de manera que haya el mismo número de canapés de cada tipo en todos los platos. ¿Cuántos platos necesitará?

platos.

Este campo es obligatorio.

Solución

1 El número de platos deberá ser divisor de 56 y de 40. Además deberá ser el máximo divisor común a ambos

2 El número máximo de platos es 8

3 En cada plato habrá canapés de queso y canapés de paté.

2Se quiere alicatar la pared de una cocina con azulejos cuadrados. Sabemos que la pared mide de ancho por de alto. Si queremos que los azulejos sean del mayor tamaño posible, ¿cuál debe ser la medida del lado de cada azulejo y la cantidad total de ellos?

1

lado = .

Este campo es obligatorio.

Solución
La respuesta es: 10
2

Total de azulejos=

Este campo es obligatorio.

Solución

1 El lado de cada azulejo deberá ser divisor de 350 y de 270. Además deberá ser el máximo divisor común a ambos

2 El lado de cada azulejo mide

3 Para cubrir el ancho se requiere azulejos y azulejos para cubrir el alto.

4 El total de azulejos requeridos es

3María tiene 36 malvaviscos y 40 paletas las cuales divide en bolsas que contienen una misma cantidad de malvaviscos y una misma cantidad de paletas. ¿Cuántas bolsas puede llenar y que cantidad de dulces contiene cada bolsa?

 
1

bolsas.

Este campo es obligatorio.

Solución
La respuesta es: 4
2

malvaviscos.

Este campo es obligatorio.

Solución
La respuesta es: 9
3

paletas.

Este campo es obligatorio.

Solución

1 El número de bolsas deberá ser divisor de 36 y de 40. Además deberá ser el máximo divisor común a ambos

2 El número máximo de bolsas es 4

3 En cada bolsa habrá malvaviscos y paletas.

4Un granjero tiene 18 gallinas, 72 cerdos y 45 ovejas. ¿Cuántos establos requiere construir para que en cada uno se tenga la misma cantidad de animales de cada tipo?

1

establos.

Este campo es obligatorio.

Solución
La respuesta es: 9
2

gallinas.

Este campo es obligatorio.

Solución
La respuesta es: 2
3

cerdos.

Este campo es obligatorio.

Solución
La respuesta es: 8
4

ovejas.

Este campo es obligatorio.

Solución

1 El número de establos deberá ser divisor de 18, de 72 y de 45. Además deberá ser el máximo divisor común

2 El número máximo de establos es 9

3 En cada establo habrá gallinas, cerdos, y ovejas.

5 se requiere construir un ortoedro de medidas 110, 132 y 165 centímetros empleando cubos de volumen máximo. ¿Cuántos cubos se requieren y cual es la medida de su arista?

1

Arista = .

Este campo es obligatorio.

Solución
La respuesta es: 11
2

Total de cubos =

Este campo es obligatorio.

Solución

1 La medida de la arista de los cubos deberá ser divisor de 110, de 132 y de 165. Además deberá ser el máximo divisor común

2 Para cubrir los distintos lados se requiere: cubos.

3 El total de cubos requeridos es

6Pedro tiene 51 galletas, 34 paletas y 85 caramelos, y los quiere distribuir entre el máximo número de personas de manera que cada una tenga la misma cantidad de cada tipo. ¿Entre cuántas personas podrá distribuir sus galletas y dulces? ¿Cuánto le tocará a cada persona?

1

personas.

Este campo es obligatorio.

Solución
La respuesta es: 17
2

galletas.

Este campo es obligatorio.

Solución
La respuesta es: 3
3

paletas.

Este campo es obligatorio.

Solución
La respuesta es: 2
4

caramelos.

Este campo es obligatorio.

Solución

1 El número de personas deberá ser divisor de 51, de 34 y de 85. Además deberá ser el máximo divisor común

2 El número máximo de personas es 17

3 A cada persona le tocará galletas, paletas, y caramelos.

Si tienes dudas puedes consultar la teoría

¿Te ha gustado este artículo? ¡Califícalo!

4,30 (10 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗