Inecuaciones de primer grado

 

Una inecuación de primer grado es una desigualdad en la que la potencia de variable es uno.

 

Ejemplos:

{x+2<6,\ \ } es una inecuación de primer grado.

 

{3(x-1)+2[2-x-3(x+2)]\ge 5(1-x)+3, \ \ } es una inecuación de primer grado.

 

{x+2<\displaystyle\frac{6}{x}, \ \ } no es una inecuación de primer grado porque la variable se encuentra en el denominador.

 

Los/las mejores profesores/as de Matemáticas que están disponibles
¡1a clase gratis!
José arturo
4,9
4,9 (36 opiniones)
José arturo
12€
/h
¡1a clase gratis!
Francisco javier
5
5 (26 opiniones)
Francisco javier
12€
/h
¡1a clase gratis!
Alex
5
5 (45 opiniones)
Alex
12€
/h
¡1a clase gratis!
José angel
4,9
4,9 (77 opiniones)
José angel
5€
/h
¡1a clase gratis!
Fátima
5
5 (11 opiniones)
Fátima
12€
/h
¡1a clase gratis!
Santiago
5
5 (24 opiniones)
Santiago
9€
/h
¡1a clase gratis!
Julio
5
5 (94 opiniones)
Julio
14€
/h
¡1a clase gratis!
Amin
5
5 (51 opiniones)
Amin
10€
/h
¡1a clase gratis!
José arturo
4,9
4,9 (36 opiniones)
José arturo
12€
/h
¡1a clase gratis!
Francisco javier
5
5 (26 opiniones)
Francisco javier
12€
/h
¡1a clase gratis!
Alex
5
5 (45 opiniones)
Alex
12€
/h
¡1a clase gratis!
José angel
4,9
4,9 (77 opiniones)
José angel
5€
/h
¡1a clase gratis!
Fátima
5
5 (11 opiniones)
Fátima
12€
/h
¡1a clase gratis!
Santiago
5
5 (24 opiniones)
Santiago
9€
/h
¡1a clase gratis!
Julio
5
5 (94 opiniones)
Julio
14€
/h
¡1a clase gratis!
Amin
5
5 (51 opiniones)
Amin
10€
/h
1ª clase gratis>

Resolución de una inecuación de primer grado paso a paso

 

Hallar los valores de {x} que satisfacen la inecuación

 

{2-\left[-2(x+1)-\displaystyle\frac{x-3}{2}\right] \le \displaystyle\frac{2x}{3}-\displaystyle\frac{5x-3}{12}+3x}

 

1 Eliminamos primero los paréntesis y después los corchetes

 

{\begin{array}{rcl}2-\left[-2(x+1)-\displaystyle\frac{x-3}{2}\right] & \le & \displaystyle\frac{2x}{3}-\displaystyle\frac{5x-3}{12}+3x \\ && \\ 2-\left[-2x-2-\displaystyle\frac{x-3}{2}\right] & \le & \displaystyle\frac{2x}{3}-\displaystyle\frac{5x-3}{12}+3x \\ && \\ 2+2x+2+\displaystyle\frac{x-3}{2} & \le & \displaystyle\frac{2x}{3}-\displaystyle\frac{5x-3}{12}+3x \end{array}}

 

2 Para eliminar los denominadores multiplicamos ambos lados de la inecuación por el mínimo común multiplo de los denominadores que aparecen en la inecuación, es decir, por {mcm(2,3,12)=12} y simplificamos las expresiones

 

{\begin{array}{rcl}(12)\left(2+2x+2+\displaystyle\frac{x-3}{2}\right) & \le & (12)\left(\displaystyle\frac{2x}{3}-\displaystyle\frac{5x-3}{12}+3x\right) \\ && \\ (12)4+(12)2x+(12)\displaystyle\frac{x-3}{2} & \le & (12)\displaystyle\frac{2x}{3}-(12)\displaystyle\frac{5x-3}{12}+(12)3x \\ && \\ 48 + 24x + 6(x-3) & \le & 4(2x)-(5x-3)+36x \\ && \\ 48 + 24x +6x - 18 & \le & 8x - 5x + 3 + 36x \\ && \\ 30 + 30x & \le & 3 +39x \end{array}}

 

3 Despejamos las {x} al lado izquierdo de la inecuación y las constantes al lado derecho. Para esto restamos {30} y {39x} en cada lado de la inecuación y simplificamos las expresiones

 

{\begin{array}{rcl}30 + 30x-(30)-(39x) & \le & 3 +39x -(30)-(39x) \\ && \\ -9x & \le & -27 \end{array}}

 

4 Para despejar {x} multiplicamos ambos lados de la inecuación por {-1/9}. Al multiplicar ambos lados por un número negativo, se cambia el sentido del símbolo de la inecuación

 

{\begin{array}{rcl}\left(\displaystyle\frac{-1}{9}\right)(-9x) & \ge & \left(\displaystyle\frac{-1}{9}\right)(-27) \\ && \\ x & \ge & 3 \end{array}}

 

5 También podemos expresar la solución de la inecuación en forma gráfica

 

Ejercicio solucion grafica de inecuacion

6 También podemos expresar la solución de la inecuación en forma de intervalo

 

{x \in [3, \infty)

 

¿Necesitas un profesor de Matemáticas?

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) 3,89/5 - 47 vote(s)
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗