Capítulos
Definición de magnitudes inversamente proporcionales
Dos magnitudes son inversamente proporcionales si al aumentar una, disminuye la otra en la misma proporción. Esto pasa cuando:
- al multiplicar una de ellas por un número cualquiera, la otra queda dividida por el mismo número. O viceversa
- al dividir una de ellas por un número cualquiera, la otra queda multiplicada por el mismo número.
Se establece una relación de proporcionalidad inversa entre dos magnitudes cuando:
A más corresponde menos.
A menos corresponde más.
Todo esto de manera proporcional. En particular
Al doble corresponde la mitad.
Al triple corresponde un tercio.
Ejemplos de problemas de proporcionalidad inversa
1 Supongamos que 3 pintores tardan 20 días en pintar un mural.
Es claro que si duplicamos el número de pintores, el tiempo que se necesita para pintar la barda se reduce a la mitad, es decir 6 pintores tardarán 10 días.
De igual manera si reducimos el número de pintores a una tercera parte, el tiempo requerido para realizar la misma tarea será el triple. Es decir 1 pintor, tardaría 60 días. Al saber lo que tarda un pintor, ya podemos completar una tabla como la siguiente

Así que el número de personas que realizan una tarea es inversamente proporcional al tiempo que tardan.
A mayor número de personas corresponde menos tiempo.
A menor número de personas corresponde más tiempo.
2 Supongamos que un vehículo tarda en realizar un trayecto 6 horas si su velocidad es de 60 km/h
La velocidad y el tiempo son otro ejemplo de magnitudes inversamente proporcionales:
A más velocidad corresponde menos tiempo.
A menos velocidad corresponde más tiempo.
Por lo que si doblamos la velocidad el tiempo disminuirá a la mitad. Es decir, si la velocidad es de 120 km/h el tiempo del trayecto será de 3 horas.









Apuntes es una plataforma dirigida al estudio y la práctica de las matemáticas a través de la teoría y ejercicios interactivos que ponemos a vuestra disposición. Esta información está disponible para todo aquel/aquella que quiera profundizar en el aprendizaje de esta ciencia. Será un placer ayudaros en caso de que tengáis dudas frente algún problema, sin embargo, no realizamos un ejercicio que nos presentéis de 0 sin que hayáis si quiera intentado resolverlo. Ánimo, todo esfuerzo tiene su recompensa.
Cuánto se debe depositar cada fin de semestre si usted quiere acumular Bs 10000 al cabo de 4 años conociendo que la entidad financiera reconoce un interés del 12% anual
esta mal la mayoria de ejercicios la cual se confunde en el mismo ejercicios ep e ip
Hola puedes hacernos el favor de mencionar los ejercicios que están mal para poder corregirlos y así evitar confusiones.
Buenos días, el ejercicio 1 está mal si la relación fuera directa entre las variables que no lo e como muestra ahí daría 400kg. La respuesta para mí es que: la relación de las variables es indirecta lo que no sé cómo llega a los 25000. No llego a ese número.
La empresa A1 tal pone en la bolsa de valores $134 acciones por 130 c/u para mantenerlas 3 años
La empresa A2 las compra y las pone nuevamente en la bolsa de valores a un interes simple de 30% por los 3 años
La tercera empresa compra estas acciones por 5 años
Durante el primer semestre la empresa A2 ve que las acciones compradas bajan a $100 podría resolverlo con las cuentas
Hola tu razonamiento es correcto si a mayor tamaño de la rueda, mas vueltas da, pero no es así, pues las ruedas grandes dan menos vueltas que las ruedas pequeñas, por eso se usa razones inversamente proporcionales.