Los/las mejores profesores/as de Matemáticas que están disponibles
Amin
5
5 (341 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (72 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (33 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (63 opiniones)
Agustina
25€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (35 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (291 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Viviana
5
5 (29 opiniones)
Viviana
18€
/h
Gift icon
¡1a clase gratis!
Antonio c
4,9
4,9 (54 opiniones)
Antonio c
14€
/h
Gift icon
¡1a clase gratis!
Amin
5
5 (341 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (72 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (33 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (63 opiniones)
Agustina
25€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (35 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (291 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Viviana
5
5 (29 opiniones)
Viviana
18€
/h
Gift icon
¡1a clase gratis!
Antonio c
4,9
4,9 (54 opiniones)
Antonio c
14€
/h
Gift icon
¡1a clase gratis!
Vamos

Volumen y area del prisma

1

Hallar el área total y el volumen de un prisma triangular de altura 6 cm y base un triángulo equilátero de lado 5 cm. Redondea a dos cifras decimales.

Ejercicio interactivo area volumen 1

,

Este campo es obligatorio.

Solución

1En primer lugar calculamos el perímetro de la base, que por ser un triángulo equilátero es

2El área total está dado por la suma del área lateral y el doble del área de la base, esto es, .

Calculamos el área lateral

3Para calcular el área de la base necesitamos la altura del triángulo equilátero, la cual obtenemos empleando el Teorema de Pitágoras

 

Ejercicios interactivos del área y volumen del prisma, de la pirámide y del tronco de pirámide

 

4Calculamos el área de la base

5Tenemos los valores del área lateral y de la base, con ellos calculamos el área total

6Por último calculamos el volumen, cuya fórmula viene dada por

2

María regala a su padre un best seller por su cumpleaños. Elige la encuadernación de tapas duras que tiene forma de prisma rectangular, siendo sus medidas 18 cm de largo, 12 cm de ancho y 6 cm de grosor. Si sabemos que al envolverlo un 10% del envoltorio queda oculto por sí mismo, ¿cuál es la cantidad de papel de regalo empleada?

ejercicio volumen libro

Este campo es obligatorio.

Solución

1En primer lugar calculamos el perímetro de la base del libro, que por ser un rectángulo es  debemos calcular la superficie del libro, como el libro es un prisma rectangular hallamos su área total, para ello requerimos conocer el perímetro de la base , el área lateral y el área de la base 2El área total está dado por la suma del área lateral y el doble del área de la base, esto es, . Calculamos el área lateral 3Calculamos el área de la base 4Tenemos los valores del área lateral y de la base, con ellos calculamos el área total 5El área del libro es de lo cual representa el . Aplicando proporcionalidad (también conocida como regla de tres) se tiene

Por lo tanto, la cantidad de papel utilizada es de .

Volumen y area del piramide

1

Calcula el volumen que ocupa la siguiente casa y el área de la fachada.

Problema volumen de la casa

Este campo es obligatorio.

Solución

1El volumen que ocupa la casa lo obtenemos sumando el volumen del ortoedro con el volumen de la pirámide. Calculamos el área de la base de la pirámide

2Calculamos el volumen de la pirámide

3Calculamos el volumen del ortoedro

4Tenemos los valores del volumen de la pirámide y del ortoedro, sumándolos obtenemos el volumen total

5Para calcular el área de la fachada, calculamos el área lateral del ortoedro

2

Calcula el área total, el volumen y apotema de una pirámide pentagonal de altura 7 cm cuya base es un pentágono regular de 3 cm de lado y apotema 2.6 cm. Redondea a dos cifras decimales.

 

Este campo es obligatorio.

Solución
La respuesta es: 19.5
3

 

Este campo es obligatorio.

Solución

1Aplicamos el Teorema de Pitágoras para calcular la apotema de la pirámide y con ello encontrar el área total y el volumen para la pirámide. 

ejercicio piramide pentagonal 2

2Para obtener el área total, necesitamos el área lateral y el área de la base. En ambos casos requerimos el perímetro de la base

3La base es un pentágono, por lo que su área es la mitad del producto de su apotema por el perímetro de la base

4El área lateral está formada por triángulos, por lo que su área es la mitad del producto del apotema de la pirámide por el perímetro de la base

5El área total es igual a la suma del área lateral con el área de la base

6Calculamos el volumen el cual es la tercera parte del producto

4

Una pirámide triangular cuya base es un triángulo equilátero de lado 1.5 cm, tiene una altura de 3.6 cm y la apotema de la base mide 0.43 cm. Calcula el volumen y el área total de dicha pirámide redondeando a dos cifras decimales.

Este campo es obligatorio.

Solución

1Para calcular el área y el volumen necesitamos calcular primero la apotema de la pirámide, puesto que conocemos la apotema de la base y la altura, aplicamos el Teorema de Pitágoras

2La base es un triángulo equilátero, por lo que para encontrar su área requerimos su altura

3Calculamos el área de la base

4Calculamos el perímetro de la base

5Calculamos el área total

6Calculamos el volumen

5

Por lo general las famosas pirámides de Egipto son pirámides cuadrangulares. La pirámide de Keops es una de las más famosas. Aproximando sus medidas podemos afirmar que tiene por base un cuadrado de lado 230.35 m y una altura de 146.61 m, calcula el volumen que ocupa dicha pirámide. Redondea a dos cifras decimales en los casos que sea necesario.

ejercicio volumen piramide de egipto 1

Si quisiésemos cubrir la pirámide de Keops con una tela, ¿qué cantidad de la misma necesitaríamos?

Este campo es obligatorio.

Solución

1Se trata de una pirámide cuadrangular, por tanto la apotema del cuadrado mide la mitad del lado, es decir

2Calculamos el área de la base

3Para encontrar el área lateral requerimos el perímetro de la base y la apotema de la pirámide

4Calculamos el área lateral

5Calculamos el área total

6Calculamos el volumen

6

Calcular la arista de de la pirámide de la siguiente figura.

ejercicio arista de una piramide 1

Este campo es obligatorio.

Solución

1En primer lugar calculamos la diagonal del cuadrado empleando el Teorema de Pitágorasejercicio arista de una piramide 3

2Para calcular la arista volvemos a utilizar el Teorema de Pitágoras con el triángulo rectángulo cuyos catetos son la altura de la pirámide y la mitad de la diagonal

 

Volumen y área del tronco de piramide

1

El cajón del escritorio de Sandra tiene poco espacio y quiere meter una cajita como la de la figura para guardar pendientes. Si el espacio que queda en el escritorio es de 12 cm de ancho, 10 de profundidad y 11 de alto, ¿cabrá la cajita en el escritorio? Responde Si o No.

ejercicio area total y volumen de piramide truncada 1

Si la parte de la caja del tronco de pirámide es la que corresponde a la tapadera, calcular la cantidad de tela necesaria para forrarla por fuera.

Este campo es obligatorio.

Solución

1Calculamos el volumen del espacio que queda libre y el de la cajita para luego compararlos

2Para calcular el volumen de la cajita calculamos el volumen del prima hexagonal y le sumamos el volumen del tronco de pirámide, para esto requerimos el perímetro y la apotema de la base mayor

3Calculamos el área de la base mayor

4Calculamos el volumen del prisma

5Calculamos el perímetro y la apotema de la base menor

6Calculamos el área de la base menor

7Calculamos el volumen del tronco de la pirámide

8Sumamos el volumen del tronco con el volumen del prisma

Como el volumen de la caja es menor que el volumen del espacio del cajón la cajita cabe.

9Para saber la cantidad de tela necesaria hay que calcular el área del tronco de pirámide, por tanto hay que calcular la apotema del tronco de pirámide aplicando el teorema de Pitágoras al triángulo que se observa en el dibujo. 

Ejercicios interactivos del área y volumen del prisma, de la pirámide y del tronco de pirámide

10Con los datos que tenemos podemos calcular el área teniendo en cuenta que sólo queremos conocer la superficie lateral de la tapadera y la parte superior (área de la base menor)

Si tienes dudas puedes consultar la teoría

¿Te ha gustado este artículo? ¡Califícalo!

4,00 (233 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗