Los/las mejores profesores/as de Matemáticas que están disponibles
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (72 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (56 opiniones)
Agustina
30€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Pedro
5
5 (134 opiniones)
Pedro
15€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (280 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (72 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (56 opiniones)
Agustina
30€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Pedro
5
5 (134 opiniones)
Pedro
15€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (280 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Vamos

Suma de monomios

Para poder sumar dos o más monomios estos han de ser monomios semejantes, es decir, monomios que tienen la misma parte literal.

La suma de monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.

Ejemplos:

Si los monomios no son semejantes, al sumarlos, se obtiene un polinomio.

Ejemplo:

no se pueden sumar.

Producto de un número por un monomio

El producto de un número por un monomio es otro monomio semejante cuyo coeficiente es el producto del coeficiente del monomio por el número.

Ejemplos:

Es corriente que para indicar la multiplicación no pongamos el signo "por" entre el número y el paréntesis

Multiplicación de monomios

La multiplicación de monomios es otro monomio que tiene por coeficiente el producto de los coeficientes y cuya parte literal se obtiene multiplicando las potencias que tengan la misma base, es decir, sumando los exponentes.

Ejemplos:

División de monomios

Sólo se pueden dividir monomios cuando el grado del dividendo es mayor o igual que el del divisor

La división de monomios es otro monomio que tiene por coeficiente el cociente de los coeficientes y cuya parte literal se obtiene dividiendo las potencias que tengan la misma base, es decir, restando los exponentes.

Ejemplo:

Si el grado del divisor es mayor, obtenemos una fracción algebraica.

Ejemplo:

Potencia de un monomio

Para realizar la potencia de un monomio se eleva, cada elemento de este, al exponente que indique la potencia.

Ejemplos:

¿Te ha gustado este artículo? ¡Califícalo!

4,23 (313 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗