Capítulos
Enunciado del teorema
Recordemos que al dividir un polinomio por otro
obtenemos un cociente
y un residuo
tales que
en donde el grado de es estrictamente menor al grado de
. Otra forma de escribir la división es:
El teorema del resto nos ayuda a determinar el residuo o resto al dividir
por un polinomio de la forma
. El teorema enuncia lo siguiente:
Teorema: Sea un polinomio. Entonces el residuo resultante al dividir
entre
es igual que el resultado de evaluar el polinomio
en
. Es decir,
Ejemplo: Consideremos los polinomios y
. Tenemos que
Por lo tanto, el residuo que resulta al dividir entre
debería ser 56. Para verificarlo, utilizaremos la regla de Ruffini; primero colocamos los coeficientes del polinomio
en la primera fila de nuestro arreglo y colocamos el 3 ligeramente a la izquierda:
Luego, bajamos el 1 (el primer coeficiente de ) debajo de la línea horizontal:
Después multiplicamos el 1 que tenemos debajo de la línea horizontal por el 3 (cuyo resultado es 3) y lo colocamos debajo del siguiente coeficiente de :
Después realizamos la resta de los números que están en la columna del segundo coeficiente () y colocamos el resultado debajo de la línea horizontal:
Repetimos el procedimiento anterior. Multiplicamos el número que obtuvimos debajo de la línea horizontal por el 3 (cuyo resultado será 9); lo colocamos debajo del siguiente coeficiente de y luego sumamos los números:
Repetimos el procedimiento, ahora con el 6:
Finalmente, repetimos el procedimiento una vez más, pero ahora con el 18:
De este último arreglo podemos ver que , que era lo que esperábamos.
Nota: como podemos ver en el ejemplo anterior, el teorema del resto sólo nos dice el residuo que resulta al dividir por un polinomio. Si queremos encontrar el cociente debemos realizar la división completa.
Nota: el teorema asume que estamos dividiendo por un polinomio de la forma . Si tenemos algún polinomio de la forma
, entonces notemos que
Por tanto, para encontrar el residuo, simplemente evaluamos . En otras palabras, debemos evaluar en el término independiente de
pero con signo cambiado.
Nota: Este teorema es muy importante, pues no permite saber si un polinomio es factor de . Sabremos que
es factor de
si
. Esto se conoce como teorema del factor.
Ejercicios
Calcula, utilizando el teorema del resto, el residuo de la división de entre
. Luego, comprueba con la regla de Ruffini.
1 Primero utilizaremos el teorema del resto. Para esto, debemos evaluar el polinomio en :
Por lo que el residuo es -4, lo cual nos indica que no es factor de
.
2 Ahora verificaremos utilizando la regla de Ruffini. Empezamos colocando los coeficientes del polinomio en la primera fila (recordemos que debemos colocar todos los coeficientes, incluso los de los términos ); luego colocamos el 1 ligeramente a la izquierda y bajamos el primer coeficiente del polinomio:
Multiplicamos el número que está debajo de la línea horizonal por el 1, y lo colocamos debajo del coeficiente del segundo término. Después, sumamos los términos de esa columna:
Repetimos el procedimiento para el siguiente número que está debajo de la línea horizontal:
Donde podemos comprobar que, efectivamente, el residuo de la división es -4.
Calcula, utilizando el teorema del resto, el residuo de la división de entre
. Luego, comprueba con la regla de Ruffini.
1 Primero utilizaremos el teorema del resto. Para esto, debemos evaluar el polinomio en :
Por lo que el residuo es 30, lo cual nos indica que no es factor de
.
2 Ahora verificaremos utilizando la regla de Ruffini. Empezamos colocando los coeficientes del polinomio en la primera fila (recordemos que debemos colocar todos los coeficientes, incluso los de los términos ); luego colocamos el 3 ligeramente a la izquierda y bajamos el primer coeficiente del polinomio:
Multiplicamos el número que está debajo de la línea horizonal por el 3, y lo colocamos debajo del coeficiente del segundo término. Después, sumamos los términos de esa columna:
Repetimos el procedimiento para el siguiente número que está debajo de la línea horizontal:
Donde podemos comprobar que, efectivamente, el residuo de la división es 30.
Calcula, utilizando el teorema del resto, el residuo de la división de entre
. Luego, comprueba con la regla de Ruffini.
1 Primero utilizaremos el teorema del resto. Para esto, debemos evaluar el polinomio en :
Por lo que el residuo es 5, lo cual nos indica que no es factor de
.
2 Ahora verificaremos utilizando la regla de Ruffini. Empezamos colocando los coeficientes del polinomio en la primera fila (recordemos que debemos colocar todos los coeficientes, incluso los de los términos ); luego colocamos el 2 ligeramente a la izquierda y bajamos el primer coeficiente del polinomio:
Multiplicamos el número que está debajo de la línea horizonal por el 2, y lo colocamos debajo del coeficiente del segundo término. Después, sumamos los términos de esa columna:
Repetimos el procedimiento para el siguiente número que está debajo de la línea horizontal:
Donde podemos comprobar que, efectivamente, el residuo de la división es 5.
Calcula, utilizando el teorema del resto, el residuo de la división de entre
. Luego, comprueba con la regla de Ruffini.
1 Primero utilizaremos el teorema del resto. Para esto, debemos evaluar el polinomio en :
Por lo que el residuo es 46, lo cual nos indica que no es factor de
.
2 Ahora verificaremos utilizando la regla de Ruffini. Empezamos colocando los coeficientes del polinomio en la primera fila (recordemos que debemos colocar todos los coeficientes, incluso los de los términos ); luego colocamos el -4 ligeramente a la izquierda y bajamos el primer coeficiente del polinomio:
Multiplicamos el número que está debajo de la línea horizonal por el -4, y lo colocamos debajo del coeficiente del segundo término. Después, sumamos los términos de esa columna:
Repetimos el procedimiento para el siguiente número que está debajo de la línea horizontal:
Donde podemos comprobar que, efectivamente, el residuo de la división es 46.
Calcula, utilizando el teorema del resto, el residuo de la división de entre
. Luego, comprueba con la regla de Ruffini.
1 Primero utilizaremos el teorema del resto. Para esto, debemos evaluar el polinomio en :
Por lo que el residuo es 0, lo cual nos indica que es factor de
.
2 Ahora verificaremos utilizando la regla de Ruffini. Empezamos colocando los coeficientes del polinomio en la primera fila (recordemos que debemos colocar todos los coeficientes, incluso los de los términos ,
, etcétera); luego colocamos el 2 ligeramente a la izquierda y bajamos el primer coeficiente del polinomio:
Multiplicamos el número que está debajo de la línea horizonal por el 2, y lo colocamos debajo del coeficiente del segundo término. Después, sumamos los términos de esa columna:
Repetimos el procedimiento para el siguiente número que está debajo de la línea horizontal:
Repetimos de nuevo:
y por último, obtenemos:
Donde podemos comprobar que, efectivamente, el residuo de la división es 0.
Considera el polinomio . Encuentra el residuo que resulta al dividir por
Utilizaremos el teorema del residuo
Basta con evaluar en
, es decir,
Considera el polinomio . Encuentra el residuo que resulta al dividir por
Utilizaremos el teorema del residuo
Basta con evaluar en
, es decir,
Considera el polinomio . Encuentra el residuo que resulta al dividir por
Utilizaremos el teorema del residuo
Basta con evaluar en
, es decir,
Considera el polinomio . Encuentra el residuo que resulta al dividir por
Utilizaremos el teorema del residuo
Basta con evaluar en
, es decir,
Considera el polinomio . Encuentra el residuo que resulta al dividir por:
a
b
c
d
Utilizaremos el teorema del residuo para todos los casos:
a
Para determinar el residuo, sólo basta con evaluar en
. Es decir,
Por tanto, el residuo es 0.
b
En este caso, debemos evaluar en . Así,
Así, el residuo también es 0.
c
Ahora debemos evaluar en . Esto es,
Por lo que el residuo es 0.
d
Por último, debemos evaluar en para encontrar el residuo en este caso. Así,
De manera que, en este último caso, el residuo es 12.
¿Eres más de aprender desde casa? Entonces, tienes que probar las clases de matematicas online de Superprof; ¡la primera es gratis!
Apuntes es una plataforma dirigida al estudio y la práctica de las matemáticas a través de la teoría y ejercicios interactivos que ponemos a vuestra disposición. Esta información está disponible para todo aquel/aquella que quiera profundizar en el aprendizaje de esta ciencia. Será un placer ayudaros en caso de que tengáis dudas frente algún problema, sin embargo, no realizamos un ejercicio que nos presentéis de 0 sin que hayáis si quiera intentado resolverlo. Ánimo, todo esfuerzo tiene su recompensa.
Utilizar el teorema del resto, la regla de ruffini y la formula general para ecuaciones de segundo grado
Escribo y elijo bien las respuestas y me aparece el setenta porciento, no entiendo porque si todas me quedan bien.
Hola te agradecemos por visitar nuestra pagina, en cuanto a lo que pasa con los resultados del cuestionario, se supone que la pagina te da las respuestas de los ejercicios y allí puedes ver cual ejercicio tiene el error, podrías por favor indicárnoslo para rectificarlo.
– 2 no es raíz del último polunomio
Hola gracias por tus observaciones, podrías hacernos el favor de mencionar el número del ejercicio para poder rectificarlo, seria de gran ayuda.
(14m³×+21m²)÷(-7)
Hola cómo resuelvo esta suma algebraicas
7+8+4 =
_. _. _
7 5. 7