En este artículo resolveremos ejercicios de la ecuación de la circunferencia los cuales ejemplifican cómo encontrar dicha ecuación dada información a priori de la circunferencia. Por ejemplo, dado el vértice, radio, diámetro, puntos de corte con los ejes, tangencia a los ejes, etcétera. También, trataremos los casos donde dada la ecuación de la circunferencia necesitamos extraer información precisa sobre ella como su vértice, radio, puntos de corte con los ejes, tangencia, etcétera.

Los siguientes ejercicios resueltos nos ayudarán a profundizar en los elementos de la circunferencia y pondrán a prueba nuestros conocimientos sobre ella.

1

Escribir la ecuación de la circunferencia de centro y radio

Solución

1 Sustituimos los datos en la ecuación ordinaria de la circunferencia:

 

 

donde:

 

son las coordenadas del centro y es el radio.

 

2 Desarrollamos las potencias y obtenemos

 

2

Escribir la ecuación de la circunferencia de centro y radio

Solución

1 Sustituimos los datos en la ecuación ordinaria de la circunferencia:

 

 

donde:

 

son las coordenadas del centro y es el radio.

 

2 Desarrollamos las potencias y obtenemos

 

3

Escribir la ecuación de la circunferencia de centro y radio

Solución

1 Sustituimos los datos en la ecuación ordinaria de la circunferencia:

 

 

donde:

 

son las coordenadas del centro y es el radio.

 

2 Desarrollamos las potencias y obtenemos

 

4

Escribir la ecuación de la circunferencia de centro y diámetro

Solución

1 Sustituimos los datos en la ecuación ordinaria de la circunferencia:

 

 

donde:

 

son las coordenadas del centro y es el radio.

 

2 Desarrollamos las potencias y obtenemos

 

5

Calcula la ecuación de la circunferencia que tiene su centro en y pasa por el punto

Solución

1 Sustituimos los datos en la ecuación ordinaria de la circunferencia:

 

 

donde:

 

son las coordenadas del centro y es el radio.

 

2 Sustituimos, desarrollamos las potencias y obtenemos el radio

 

 

3 Sustituimos el valor del radio y del centro, desarrollamos las potencias y obtenemos

 

6

Calcula la ecuación de la circunferencia que tiene su centro en y es tangente al eje

Solución

1 Como la circunferencia es tangente al eje , entonces el radio es igual a la distancia del centro al eje . Luego,

 

2 Sustituimos el valor del radio y del centro en la ecuación general de la circunferencia, desarrollamos las potencias y obtenemos

 

7

Calcula la ecuación de la circunferencia que tiene su centro en y es tangente al eje

Solución

1 Como la circunferencia es tangente al eje , entonces el radio es igual a la distancia del centro al eje . Luego,

 

2 Sustituimos el valor del radio y del centro en la ecuación general de la circunferencia, desarrollamos las potencias y obtenemos

 

8

Calcula la ecuación de la circunferencia que tiene su centro en y es tangente a la recta horizontal

Solución

1 Como la circunferencia es tangente a la recta , entonces el radio es igual a la distancia del centro a dicha recta tangente. Luego,

 

2 Sustituimos el valor del radio y del centro en la ecuación general de la circunferencia, desarrollamos las potencias y obtenemos

 

9

Calcula la ecuación de la circunferencia que tiene su centro en y es tangente a la recta vertical

Solución

1 Como la circunferencia es tangente a la recta , entonces el radio es igual a la distancia del centro a dicha recta tangente. Luego,

 

2 Sustituimos el valor del radio y del centro en la ecuación general de la circunferencia, desarrollamos las potencias y obtenemos

 

10

Calcula la ecuación de la circunferencia que tiene diámetro con extremos y

Solución

1 Como conocemos los extremos del diámetro, entonces el punto medio es el centro de la circunferencia

 

 

2 Para encontrar el radio, sustituimos el valor del centro y de uno de los extremos del diámetro en la ecuación general de la circunferencia

 

 

3 Sustituimos el valor del radio y del centro en la ecuación general de la circunferencia, desarrollamos las potencias y obtenemos

 

11

Dada la circunferencia de ecuación , hallar el centro y el radio.

Solución

1 Reescribimos la ecuación ordenando las e y completamos los trinomios cuadrados perfectos

 

 

2 Factorizamos los trinomios cuadrados perfectos

 

 

y

 

 

12

Determina las coordenadas del centro y el radio de las circunferencias:

A

B

C

D

Solución

A Reescribimos la ecuación en su forma ordinaria:

 

 

y

 

B

 

y

 

Ya que es imaginario, no es una circunferencia real

 

C

 

Dividiendo por 4 y reescribiendo la ecuación en forma ordinaria:

 

 

 

y

 

D

 

Dividiendo por 4 y reescribiendo la ecuación en forma ordinaria:

 

 

 

y

13

Calcula la ecuación de la circunferencia que tiene su centro en y es tangente al eje de abscisas

Solución

1 Graficamos la circunferencia con los datos dados:


representacion grafica de circunferencia con centro en 2, -3 y tangente al eje de abscisas

 

2 A partir de la gráfica podemos deducir que

         

 

 

14

Calcula la ecuación de la circunferencia que tiene su centro en y es tangente al eje de ordenadas

Solución

1 Graficamos la circunferencia con los datos dados:

 

representación gráfica de circunferencia tangente al eje de ordenadas, con centro en -2, 8

 

2 A partir de la gráfica podemos deducir que

         

 

 

 

 

15

Calcula la ecuación de la circunferencia que tiene su centro en el punto de intersección de la rectas , , y su radio es igual a

Solución

1 Planteamos un sistema de ecuaciones con las rectas dadas, la solución del sistema de ecuaciones corresponde al centro de la circunferencia

 

         

 

2 Sustituimos y   en la forma ordinaria

 

 

 

representacion grafica de circulo con centro en -1, 0

16

Hallar la ecuación de la circunferencia concéntrica con la ecuación , y que pasa por el punto

Solución

1 Por ser concéntricas tienen el mismo centro:

 

representacion grafica de circulos concentricos con centro en 3 y -1

 

2 Calculamos el centro de la circunferencia

 

 

 

3 Para calcular el radio calculamos la distancia de a

 

 

4 Sustituimos el centro y el radio en la forma ordinaria

 

 

17

Hallar la ecuación de la circunferencia que tiene el centro en el punto y es tangente a la recta:

Solución

1 El radio se calcula con la distancia del punto a la recta

 

 

2 Sustituimos y en la forma ordinaria

 

 

 

representacion grafica de circulo con centro 3 y 1, y con recta tangente

18

Hallar la ecuación de la circunferencia que pasa por los puntos

Solución

1 Considerando la ecuación general de una circunferencia como , sustituimos los puntos dados y construimos un sistema de ecuaciones:

 

 

2 Resolvemos el sistema de ecuaciones y sustituimos en la forma general considerada:

 

                   

 

19

Hallar la ecuación de la circunferencia circunscrita al triángulo de vértices:

Solución

representación gráfica de la circunferencia circunscrita al triángulo


1 Considerando que los vértices del triángulo son puntos por los que pasa la circunferencia, podemos considerar la ecuación de la circunferencia como y sustituir los puntos dados:

 

 

2 Resolvemos el sistema de ecuaciones y sustituimos en la forma general considerada:

 

 

                   

 

20

Hallar la ecuación de la circunferencia que pasa por los puntos y y tiene su centro sobre la recta:

Solución

representacion grafica de circunferencia con centro en una recta

 

1 Consideremos que el punto es el centro de la circunferencia y se encuentra sobre la recta , podemos plantear el sistema:

 

 

2 De las primeras 2 ecuaciones obtenemos:

 

 

3 Resolviendo el sistema:

 

                 

 

21

Calcula la ecuación de la circunferencia que pasa por el punto , cuyo radio es y cuyo centro se halla en la bisectriz del primer y tercer cuadrantes

Solución

representacion gráfica de circulo con centro en la recta

 

1 Consideremos que el punto es el centro de la circunferencia, además, la bisectriz del primer y tercer cuadrante es la recta :

 

 

 

         

 

 

 

2 Obtenemos 2 soluciones para :

 

                                           

 

3 Para

 

 

 

 

 

 

4 Para

 

 

 

 

22

Los extremos del diámetro de una circunferencia son los puntos y . ¿Cuál es la ecuación de esta circunferencia?

Solución

representación gráfica de un circulo y una recta con dos puntos en la circunferencia A y B y con centro C

 

1 El radio de la circunferencia será la mitad de la distancia entre los puntos y :

 

 

2 El centro de la circunferencia se encontrará en el punto medio entre los puntos y :

 

 

3 Obtenemos los coeficientes y para la forma

 

         

 

 

23

Hallar la ecuación de la circunferencia concéntrica a la circunferencia que sea tangente a la recta

Solución

representación gráfica de circunferencia concéntrica a la circunferencia con recta tangente

 

1 Obtenemos el centro de la circunferencia con coordenadas :

 

         

 

         

 

2 El radio será la distancia entre y la recta :

 

 

3 Obtenemos los coeficientes y para la forma

 

                 

 

24

Calcula la posición relativa de la circunferencia  y la recta

Solución

representacion de posicion relativa de una recta en una circunferencia

 

1 Planteamos un sistema de ecuaciones entre la ecuación de la circunferencia y la ecuación de la recta para buscar sus intersecciones

 

         

 

 

 

 

         

 

         

 

Al haber dos puntos de intersección, podemos decir que la recta y la circunferencia son secantes

25

Estudiar la posición relativa de la circunferencia con las rectas:

A

B

C

Solución

A

 

representacion gráfica de una recta y un circunferencia secantes


Planteamos un sistema de ecuaciones entre la ecuación de la circunferencia y la ecuación de la recta para buscar sus intersecciones:

 

 

         

 

       

 

       

 

Al haber dos puntos de intersección, podemos decir que la recta y la circunferencia son secantes

 

B

 

grafica de circulo y recta tangente

 

Planteamos un sistema de ecuaciones entre la ecuación de la circunferencia y la ecuación de la recta para buscar sus intersecciones:

 

 

   

 

                   

 

Al haber un solo punto de intersección entre la circunferencia y la recta, podemos decir que son tangentes

 

C

 

dibujo de circulo y recta no tangente

 

Planteamos un sistema de ecuaciones entre la ecuación de la circunferencia y la ecuación de la recta para buscar sus intersecciones:

 

 

         

 

 

Al no existir puntos de intersección entre la recta y la circunferencia podemos decir que son exteriores

¿Te ha gustado este artículo? ¡Califícalo!

4,18 (346 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗