La circunferencia

 

La circunferencia es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro.

 

 

 

 

Elevando al cuadrado obtenemos la ecuación:

 

 

Si desarrollamos:

 

 

y realizamos estos cambios:

 

 

Obtenemos otra forma de escribir la ecuación:

 

 

Donde el centro es:

 

 

y el radio cumple la relación:

 

 

Para que una expresión del tipo: sea una circunferencia debe cumplir que:

 

1 - Los coeficientes de x2 e y2 sean iguales a la unidad. Si tuvieran ambos un mismo coeficiente distinto de 1, podríamos dividir por él todos los términos de la ecuación.

 

2 - No tenga término en xy.

 

3 -

 

Ejercicios de ecuación reducida de la circunferencia

 

Si el centro de la circunferencia coincide con el origen de coordenadas la ecuación queda reducida a:

 

 

Escribir la ecuación de la circunferencia de centro (3, 4) y radio 2.

 

 

 

 

Dada la circunferencia de ecuación x2 + y2 - 2x + 4y - 4 = 0, hallar el centro y el radio.

 

 

 

Hallar la ecuación de la circunferencia que pasa por los puntos A(2,0), B(2,3), C(1, 3).

 

Si sustituimos x e y en la ecuación por las coordenadas de los puntos se obtiene el sistema:

 

 

 

 

Indicar si la ecuación: 4x2 + 4y2 - 4x - 8y - 11 = 0, corresponde a una circunferencia, y en caso afirmativo, calcular el centro y el radio.

 

1 - Como los coeficientes de x2 e y2 son distintos a la unidad, dividimos por 4:

 

2 -

 

 

3 - No tiene término en xy.

 

 

 

Es una circunferencia, ya que se cumplen las tres condiciones.

 

 

 

Calcula la ecuación de la circunferencia que tiene su centro en (2,-3) y es tangente al eje de abscisas.

 

 

 

 

 

 

Calcula la ecuación de la circunferencia que tiene su centro en (-1, 4) y es tangente al eje de ordenadas.

 

 

 

 

 

Calcula la ecuación de la circunferencia que tiene su centro en el punto de intersección de la rectas x + 3y + 3 = 0, x + y + 1 = 0, y su radio es igual a 5.

 

 

 

 

 

 

 

Hallar la ecuación de la circunferencia concéntrica con la ecuación , y que pasa por el punto (-3,4).

 

Por ser concéntricas tienen el mismo centro.

 

 

 

 

 

 

 

 

 

 

Los extremos del diámetro de una circunferencia son los puntos A(-5,3) y B(3,1). ¿Cuál es la ecuación de esta circunferencia?

 

 

 

 

 

 

 

Hallar la ecuación de la circunferencia concéntrica a la circunferencia que sea tangente a la recta 3x - 4y + 7 = 0.

 

 

 

 

 

 

Hallar la ecuación de la circunferencia que pasa por los puntos A(2,1) y B(-2,3) y tiene su centro sobre la recta: x + y + 4 = 0.

 

 

 

 

 

 

Calcula la ecuación de la circunferencia que pasa por el punto (0,-3), cuyo radio es y cuyo centro se halla en la bisectriz del primer y tercer cuadrantes.

 

 

 

 

 

 

 

 

 

 

 

 

 

Encuentra a tu profesor de matematicas online en Superprof.

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (5 votes, average: 5,00 out of 5)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido