Es el producto de los factores consecutivos desde hasta . El factorial de un número se denota por .

Variaciones

Se llama variaciones ordinarias de elementos tomados de en a los distintos grupos formados por elementos de forma que:

No entran todos los elementos

importa el orden

No se repiten los elementos

También podemos calcular las variaciones mediante factoriales:

Las variaciones se denotan por

Variaciones con repetición

Se llama variaciones con repetición de elementos tomados de en a los distintos grupos formados por elementos de manera que:

No entran todos los elementos si . pueden entrar todos los elementos si

importa el orden

se repiten los elementos

Permutaciones

entran todos los elementos

importa el orden

No se repiten los elementos

Permutaciones circulares

Se utilizan cuando los elementos se han de ordenar "en círculo", (por ejemplo, los comensales en una mesa), de modo que el primer elemento que "se sitúe" en la muestra determina el principio y el final de muestra.

Permutaciones con repetición

Permutaciones con repetición de elementos donde el primer elemento se repite veces , el segundo veces , el tercero veces,... de tal modo que , son los distintos grupos que pueden formarse con esos elementos de forma que :

entran todos los elementos

importa el orden

se repiten los elementos

Combinaciones

Se llama combinaciones de elementos tomados de en a todas las agrupaciones posibles que pueden hacerse con los elementos de forma que:

No entran todos los elementos

No importa el orden

No se repiten los elementos

También podemos calcular las combinaciones mediante factoriales:

Combinaciones con repetición

Las combinaciones con repetición de elementos tomados de en , son los distintos grupos formados por elementos de manera que:

No entran todos los elementos

No importa el orden

se repiten los elementos

Números combinatorios

El número   se llama también número combinatorio. Se representa por

y se lee "m sobre n".

Propiedades de los números combinatorios

1

2

3

Binomio de Newton

La fórmula que nos permite hallar las potencias de un binomio se conoce como binomio de Newton.

Si deseas aplicar la teoría con ejercicios de variaciones, combinaciones y  permutaciones, no dudes en consultar las otras secciones de este tema.

¿Te ha gustado este artículo? ¡Califícalo!

4,36 (217 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗