Calcula las probabilidades que si piden dada la siguiente información:
Sean y
dos sucesos aleatorios con
Hallar:
1
2
3
4
5
6
7
Sean y
dos sucesos aleatorios con
Hallar:
1
Los sucesos son compatibles porque la intersección es distinta del vacío, , dado que su probabilidad no es nula. Por lo tanto
2
Las probabilidad de es igual a
(probabilidad total) menos la probabilidad del suceso
3
La probabilidad de es igual a
(probabilidad total) menos la probabilidad del suceso
4
Aplicando las leyes de Morgan obtenemos
Además, la probabilidad de es igual a
(probabilidad total) menos la probabilidad del suceso
, por lo tanto
5
Notemos que . Aplicando la probabilidad de la diferencia de sucesos tenemos
6
Aplicando las leyes de Morgan obtenemos
Además, la probabilidad de es igual a
(probabilidad total) menos la probabilidad del suceso
, por lo tanto
7
Notemos que . Aplicando la probabilidad de la diferencia de sucesos tenemos
Calcula lo que se pide dados los siguientes sucesos y sus probabilidades.
Encontrar:
1
2
3
4
Calcula lo que se pide dados los siguientes sucesos y sus probabilidades.
Encontrar:
1
La probabilidad de es igual a
(probabilidad total) menos la probabilidad del suceso
2
Recordemos que , por lo tanto, si despejamos
obtenemos
3
Notemos que . Aplicando la probabilidad de la diferencia de sucesos tenemos
4
Notemos que . Aplicando la probabilidad de la diferencia de sucesos tenemos
Describe el espacio muestral dado el siguiente experimento.
Se sacan dos bolas de una urna que se compone de una bola blanca, otra roja, otra verde y otra negra. Describe el espacio muestral cuando:
1 La primera bola se devuelve a la urna antes de sacar la segunda.
2 La primera bola no se devuelve.
Se sacan dos bolas de una urna que se compone de una bola blanca, otra roja, otra verde y otra negra. Describe el espacio muestral cuando:
1 La primera bola se devuelve a la urna antes de sacar la segunda.
2 La primera bola no se devuelve.
Calcula las probabilidades indicadas según el siguiente experimento:
Una urna tiene ocho bolas rojas, cinco amarilla y siete verdes. Si se extrae una bola al azar calcular la probabilidad de que:
1 Sea roja.
2 Sea verde.
3 Sea amarilla.
4 No sea roja.
5 No sea amarilla.
Una urna tiene ocho bolas rojas, cinco amarilla y siete verdes. Si se extrae una bola al azar calcular la probabilidad de que:
1 Sea roja.
-
- Casos favorables:
.
- Casos favorables:
- Casos posibles:
.
Por lo tanto, la probabilidad es
2 Sea verde.
-
- Casos favorables:
.
- Casos favorables:
- Casos posibles:
.
Por lo tanto, la probabilidad es
3 Sea amarilla.
-
- Casos favorables:
.
- Casos favorables:
- Casos posibles:
.
Por lo tanto, la probabilidad es
4 No sea roja.
-
- Casos favorables: .
- Casos posibles:
.
Por lo tanto, la probabilidad es
5 No sea amarilla.
-
- Casos favorables:
.
- Casos favorables:
- Casos posibles:
.
Por lo tanto, la probabilidad es
Calcula las probabilidades indicadas según el siguiente experimento:
Una urna contiene tres bolas rojas y siete blancas. Se extraen dos bolas al azar. Escribir el espacio muestral y hallar la probabilidad de los sucesos:
1 Con reemplazamiento (sacar la primera bola y volver a meterla antes de sacar la segunda).
2 Sin reemplazamiento (sacar la primera bola y no regresarla, sacar la segunda de las restantes).
Una urna contiene tres bolas rojas y siete blancas. Se extraen dos bolas al azar. Escribir el espacio muestral y hallar la probabilidad de los sucesos:
1 Con reemplazamiento (sacar la primera bola y volver a meterla antes de sacar la segunda).
El espacio muestral está dado por
La extracción de dos bolas con reemplazamiento son sucesos independientes, puesto que la extracción de la primera bola no tiene ningún efecto sobre la segunda, por lo tanto
2 Sin reemplazamiento (sacar la primera bola y no regresarla, sacar la segunda de las restantes).
El espacio muestral está dado por
La extracción de dos bolas con reemplazamiento son sucesos dependientes, la extracción de la primera bola afecta la extracción de la segunda, por lo tanto
Calcula las probabilidades indicadas según el siguiente experimento:
Se extrae una bola de una urna que contiene cuatro bolas rojas, cinco blancas y seis negras.
1 ¿Cuál es la probabilidad de que la bola sea roja o blanca?
2 ¿Cuál es la probabilidad de que no sea blanca?
Se extrae una bola de una urna que contiene cuatro bolas rojas, cinco blancas y seis negras.
1 ¿Cuál es la probabilidad de que la bola sea roja o blanca?
La extracción de dos bolas de distinto color son suceso incompatibles, es decir, que su intersección es el conjunto vacío. Por lo tanto
2 ¿Cuál es la probabilidad de que no sea blanca?
Recordemos que la probabilidad del suceso es igual a
menos la probabilidad del suceso
, así
Resuelve los siguientes problemas:
En una clase asisten alumnos en donde hay
alumnas rubias,
morenas,
alumnos rubios y
morenos. Encontrar la probabilidad de que un alumno:
1 Sea hombre.
2 Sea mujer morena.
3 Sea hombre o mujer.
En una clase asisten alumnos en donde hay
alumnas rubias,
morenas,
alumnos rubios y
morenos. Encontrar la probabilidad de que un alumno:
1 Sea hombre.
-
- Casos favorables:
.
- Casos favorables:
- Casos posibles:
.
2 Sea mujer morena.
-
- Casos favorables:
.
- Casos favorables:
- Casos posibles:
.
3 Sea hombre o mujer.
-
- Casos favorables:
.
- Casos favorables:
- Casos posibles:
.
Un dado está trucado, de forma que las probabilidades de obtener las distintas caras son proporcionales a los números de estas.
Hallar:
1 La probabilidad de obtener el 6 en un lanzamiento.
2 La probabilidad de conseguir un número impar en un lanzamiento.
Un dado está trucado, de forma que las probabilidades de obtener las distintas caras son proporcionales a los números de estas.
Hallar:
1 La probabilidad de obtener el 6 en un lanzamiento.
Llamemos a la probabilidad, dado que es proporcional a los números de los dados tendremos:
. Además, su suma cumple que
Despejando obtenemos
Por lo tanto, es
2 La probabilidad de conseguir un número impar en un lanzamiento.
Los números impares serían, y
, por lo tanto la probabilidad está dada por
Se lanzan dos dados al aire y se anota la suma de los puntos obtenidos. Se pide:
1 La probabilidad de que salga el .
2 La probabilidad de que el número obtenido sea par.
3 La probabilidad de que el número obtenido sea múltiplo de tres.
Se lanzan dos dados al aire y se anota la suma de los puntos obtenidos. Se pide:
1 La probabilidad de que salga el .
-
- Casos favorables: Los casos favorables son los
siguientes
- Casos favorables: Los casos favorables son los
- Casos posibles: Para encontrar los casos posibles debemos calcular las variaciones con repetición de
elementos tomados de
en
,
.
Así, nuestra probabilidad de que los dados sumen es
.
2 La probabilidad de que el número obtenido sea par.
-
- Casos posibles: Por el inciso anterior sabemos que los casos posibles son
.
- Casos posibles: Por el inciso anterior sabemos que los casos posibles son
- Casos favorables: La cantidad de casos favorables, en los cuales la suma es par, es la mitad es la mitad de los casos posibles, esto dado que la suma de dos números pares es par y la suma de dos números impares es par, por lo tanto los casos favorables son
.
Dado lo anterior, la probabilidad de que la suma sea par es
.
3 La probabilidad de que el número obtenido sea múltiplo de tres.
-
- Casos favorables: Los casos favorables son los
siguientes
- Casos favorables: Los casos favorables son los
- Casos posibles: De los incisos anteriores sabemos que los casos posibles son
.
Así, nuestra probabilidad de que los dados sumen un múltiplo de es
.
Se lanzan tres dados. Encontrar la probabilidad de que:
1 Salga en todos.
2 Los puntos obtenidos sumen .
Se lanzan tres dados. Encontrar la probabilidad de que:
1 Salga en todos.
- Casos favorables: Solamente tenemos un caso favorable.
- Casos posibles: Para encontrar los casos posibles debemos calcular las variaciones con repetición de
elementos tomados de
en
,
.
Así, nuestra probabilidad de que todos los dados sean es
.
2 Los puntos obtenidos sumen .
-
- Casos favorables: Los casos favorables son los
siguientes
- Casos favorables: Los casos favorables son los
- Casos posibles: Del inciso anterior sabemos que los casos posibles son
.
Así, nuestra probabilidad de que los dados sumen es
.
Hallar la probabilidad de que al levantar unas fichas de dominó se obtenga un número de puntos mayor que o que sea múltiplo de
.
Hallar la probabilidad de que al levantar unas fichas de dominó se obtenga un número de puntos mayor que o que sea múltiplo de
.
El evento de fichas de dominó en donde se obtenga un número de puntos mayor que está dado por
El evento de fichas de dominó en donde se obtenga un número de puntos mayor que está dado por
Por lo tanto, nuestro evento final a considerar es . Además, el juego de dominó está compuesto por
fichas, por lo tanto, la probabilidad está dada por
Busca la probabilidad de que al echar un dado al aire, salga:
1 Un número par.
2 Un múltiplo de tres.
3 Mayor que cuatro.
Busca la probabilidad de que al echar un dado al aire, salga:
1 Un número par.
-
- Casos favorables: Los casos favorables son los
siguientes
- Casos favorables: Los casos favorables son los
- Casos posibles: Al ser un dado de
caras, tenemos
casos favorables.
Dado lo anterior, tenemos que la probabilidad es
.
2 Un múltiplo de tres.
-
- Casos favorables: Los casos favorables son los
siguientes
- Casos favorables: Los casos favorables son los
- Casos posibles: Al ser un dado de
caras, tenemos
casos favorables.
Dado lo anterior, tenemos que la probabilidad es
.
3 Mayor que cuatro.
-
- Casos favorables: Los casos favorables son los
siguientes
- Casos favorables: Los casos favorables son los
- Casos posibles: Al ser un dado de
caras, tenemos
casos favorables.
Dado lo anterior, tenemos que la probabilidad es
.
Hallar la probabilidad de que al lanzar al aire dos monedas, salgan:
1 Dos caras.
2 Dos cruces.
3 Una cara y una cruz.
Hallar la probabilidad de que al lanzar al aire dos monedas, salgan:
1 Dos caras.
Son sucesos independientes, por lo tanto, dado que la probabilidad de que cada moneda sea cara es , tenemos que
2 Dos cruces.
Al igual que el inciso anterior, son sucesos independientes, por lo tanto, dado que la probabilidad de que cada moneda sea cruz es , tenemos que
3 Una cara y una cruz.
La probabilidad de que obtengamos una cara y una cruz es la probabilidad de obtener el evento . Además, al igual que en inciso anteriores, son sucesos independientes, por lo tanto, dado que la probabilidad de que cada moneda sea cruz o cara es
, tenemos que
En un sobre hay papeletas,
llevan dibujado un coche las restantes son blancas. Hallar la probabilidad de extraer al menos una papeleta con el dibujo de un coche:
1 Si se saca una papeleta.
2 Si se extraen dos papeletas.
3 Si se extraen tres papeletas.
En un sobre hay papeletas,
llevan dibujado un coche las restantes son blancas. Hallar la probabilidad de extraer al menos una papeleta con el dibujo de un coche:
1 Si se saca una papeleta.
Tenemos casos favorables y
posibles, por lo tanto
.
2 Si se extraen dos papeletas.
Tenemos que la probabilidad de que al sacar paletas al menos una tenga un coche es igual a
menos la probabilidad de que al sacar
paletas las dos sean blancas. Por lo tanto
3 Si se extraen tres papeletas.
Tenemos que la probabilidad de que al sacar paletas al menos una tenga un coche es igual a
menos la probabilidad de que al sacar
paletas todas sean blancas. Por lo tanto
Los estudiantes y
tienen respectivamente probabilidades
y
de suspender un examen. La probabilidad de que suspendan el examen simultáneamente es de
. Determinar la probabilidad de que al menos uno de los dos estudiantes suspenda el examen.
Los estudiantes y
tienen respectivamente probabilidades
y
de suspender un examen. La probabilidad de que suspendan el examen simultáneamente es de
. Determinar la probabilidad de que al menos uno de los dos estudiantes suspenda el examen.
Notemos que son sucesos compatibles porque . Por lo tanto
En Superprof te ayudamos con las matematicas secundaria.
Dos hermanos salen de caza. El primero mata un promedio de piezas cada
disparos y el segundo
pieza cada
disparos. Si los dos disparan al mismo tiempo a una misma pieza, ¿cuál es la probabilidad de que la maten?
Dos hermanos salen de caza. El primero mata un promedio de piezas cada
disparos y el segundo
pieza cada
disparos. Si los dos disparan al mismo tiempo a una misma pieza, ¿cuál es la probabilidad de que la maten?
Primero calculemos la probabilidad de que ambos maten una pieza. Esto es
Notemos que, dado lo anterior, los sucesos son compatibles. Por lo tanto
Una clase consta de hombres y
mujeres; la mitad de los hombres y la mitad de las mujeres tienen los ojos castaños. Determinar la probabilidad de que una persona elegida al azar sea un hombre o tenga los ojos castaños.
Una clase consta de hombres y
mujeres; la mitad de los hombres y la mitad de las mujeres tienen los ojos castaños. Determinar la probabilidad de que una persona elegida al azar sea un hombre o tenga los ojos castaños.
Dada nuestra tabla anterior, tenemos que la probabilidad es
Si todavía necesitas ayuda, en Superprof y te conseguimos las mejores clases de matematicas secundaria y te ayudamos a encontrar el mejor profesor de matematicas para tus necesidades.
La probabilidad de que un hombre viva años es
y la de que su mujer viva
años es
. Se pide calcular la probabilidad:
1 De que ambos vivan años.
2 De que el hombre viva años y su mujer no.
3 De que ambos mueran antes de los años.
La probabilidad de que un hombre viva años es
y la de que su mujer viva
años es
. Se pide calcular la probabilidad:
1 De que ambos vivan años.
Primero, notemos que son sucesos independientes, por lo tanto
2 De que el hombre viva años y la mujer no.
3 De que ambos mueran antes de los años.
Recuerda que en Superprof te ayudamos a encontrar tus clases particulares matematicas madrid. Si lo prefieres, también puedes optar por un profesor de matematicas online.
La plataforma que conecta profes particulares y estudiantes
Apuntes es una plataforma dirigida al estudio y la práctica de las matemáticas a través de la teoría y ejercicios interactivos que ponemos a vuestra disposición. Esta información está disponible para todo aquel/aquella que quiera profundizar en el aprendizaje de esta ciencia. Será un placer ayudaros en caso de que tengáis dudas frente algún problema, sin embargo, no realizamos un ejercicio que nos presentéis de 0 sin que hayáis si quiera intentado resolverlo. Ánimo, todo esfuerzo tiene su recompensa.
buenas tardes alguien me podria ayudar con estos ejercicios 1. Considere la distribuci´on probabilidad discreta
P(x) = c
1 + x
2
(1)
con x = 0, 2, 4, 6, 8.
Hallar el valor de c
Hallar la media, la varianza y su desviaci´on est´andar
2. Considere una distribuci´on normal continua de media µ = 2 y σ = 4
Hallar P(2 ≤ x ≤ 4)
Hallar P(x ≤ −1)
Dada P(0 ≤ x ≤ 1), indique los valores P(a ≤ z ≤ b) donde la anterior es la probabilidad
normal est´andar, es decir a y b
3. Considere la densidad de probabilidad de Cauchy
f(x) = c
1 + x
2
(2)
Hallar c tal que la integral R ∞
−∞ f(x)dx = 1
Hallar P(x > 1)
4. Considere la distribuci´on de probabilidad
f(x) =
c(9 − x
2
) si −3 ≤ x ≤ 3
0 si no
(3)
Hallar c
Graficar f(x)
Hallar la media, su varianza y desviaci´on est´andar
Hola me podrían ayudar conexión este ejercicios dejando constancia de los calculos
realizados y las formulas utilizadas.
1- En una fabrica en promedio un articulo sale defectuoso, determine la probabilidad de que en un lote de 25 art´ıculos
terminados, como maximo 5 salgan defectuosos.
Me ayudan……Suponga que la NASA envía, una tras otra, dos sondas espaciales distintas para tomar fotos cercanas del planeta Plutón. Estiman los técnicos de ese centro espacial que las probabilidades de que cumplan exitosamente su misión son de 0.7 y 0.5, respectivamente. Encuentre la probabilidad que se logren recibir fotos de Plutón. (asuma independencia)
Un restaurante piensa hacer una promoción de ventas, pretende regalar el platillo que sea servido al cliente después de 10 minutos de tomada la orden; para esto el gerente a registrado que de una muestra de 25 datos la media fue de 7.64 con una desviación estándar de 1.8 min. Qué probabilidad hay de que regale un platillo.
Hay una caja con 4 bolas amarillas,3 bolas verdes y 5 bolas rojas ¿Que probabilidades hay de que saque una bola amarilla en un solo intento?
Buenas tardes me pueden ayudar con estos 3 ejercicios por favor, muchas gracias.
1. Suponga que la NASA envía, una tras otra, dos sondas espaciales distintas para tomar fotos cercanas del planeta Plutón. Estiman los técnicos de ese centro espacial que las probabilidades de que cumplan exitosamente su misión son de 0.7 y 0.5, respectivamente. Encuentre la probabilidad que se logren recibir fotos de Plutón.
2. Se ha investigado la utilidad de un test de diagnóstico sobre una determinada enfermedad produciéndose los siguientes resultados
+ – Total
Enfermo 94 38 132
Sano 215 653 868
Total 309 691 1000.
Obtener una aproximación de los valores de:
a) El coeficiente falso-positivo
b) El coeficiente falso-negativo.
c) La sensibilidad.
d) La especificidad.
e) El valor predictivo positivo.
f) El valor predictivo negativo
3. 15. Un test detecta la presencia de cierto tipo T de bacterias en el agua con probabilidad 0,9, en caso de haberlas. Si no las hay, detecta la ausencia con probabilidad de 0,8. Sabiendo que la probabilidad de que una muestra de agua contenga bacterias del tipo T es 0,2, calcular la probabilidad de que:
a) Realmente haya presencia de bacterias cuando el test ha dado resultado positivo.
b) Realmente no haya presencia de bacterias cuando el test ha dado resultado negativo.
Podrían ayudarme por favor con este ejercicio?:
Se tienen tres cajas. una caja tiene 2 fichas blancas, otra 2 rojas y la otra 1 roja y 1 negra. Se sacan una ficha y es blanca, cuál es la probabilidad de sacar ficha blanca de las que quedan en la caja elegida?
Hola me ayudan con este ejercicio
Si se recibe un envió de 1,000 focos, de los cuales 50 están defectuosos y se eligen al azar 2 de ellos, ¿Cuál es la probabilidad de que ambos estén defectuosos?