En general para resolver una ecuación de primer grado debemos seguir los siguientes pasos:

 

1 Quitar paréntesis.

 

2 Quitar denominadores.

 

3 Agrupar los términos en {x} en un miembro y los términos independientes en el otro.

 

4 Reducir los términos semejantes.

 

5 Despejar la incógnita.

 

Ejemplo:

 

Resolver {2(x+1)-3(x-2)=x-6}

 

1 Quitamos paréntesis.

 

{\begin{array}{rcl} 2(x+1)-3(x-2)&=&x-6 \\ && \\ 2x+2-3x+6 & =&x-6 \end{array}}

 

2 Agrupamos los términos en {x} en un miembro y los términos independientes en el otro.

 

{\begin{array}{rcl} 2(x+1)-3(x-2)&=&x-6 \\ && \\ 2x+2-3x+6 & =&x-6 \\ && \\ 2x-3x-x & =& -6-2-6 \end{array}}

 

3 Reducimos los términos semejantes.

 

{\begin{array}{rcl} 2(x+1)-3(x-2)&=&x-6 \\ && \\ 2x+2-3x+6 & =&x-6 \\ && \\ 2x-3x-x & =& -6-2-6 \\ && \\ -2x & = & -14 \end{array}}

 

4 Despejamos la incógnita.

 

{\begin{array}{rcl} 2(x+1)-3(x-2)&=&x-6 \\ && \\ 2x+2-3x+6 & =&x-6 \\ && \\ 2x-3x-x & =& -6-2-6 \\ && \\ -2x & = & -14 \\ && \\ x&=&7 \end{array}}

 

Ejemplo:

 

Resolver {\displaystyle\frac{x+1}{6}-\frac{3(x-2)}{8}=x-6}

 

1 Quitamos paréntesis.

 

{\begin{array}{rcl} \displaystyle\frac{x+1}{6}-\frac{3(x-2)}{8}&=&x-6 \\ && \\ \displaystyle\frac{x+1}{6}-\frac{3x-6}{8}&=&x-6 \end{array}}

 

2 Quitamos los denominadores multiplicando ambos miembros por el mínimo común múltiplo de los denominadores {mcm(6, 8)=24}

 

{\begin{array}{rcl} \displaystyle\frac{x+1}{6}-\frac{3(x-2)}{8}&=&x-6 \\ && \\ \displaystyle\frac{x+1}{6}-\frac{3x-6}{8}&=&x-6 \\ && \\ 24\left(\displaystyle\frac{x+1}{6}-\frac{3x-6}{8}\right)&=&24(x-6) \\ && \\ 4(x+1)-3(3x-6)&=&24(x-6) \\ && \\ 4x+4-9x+18&=&24x-144 \end{array}}

 

3 Agrupamos los términos en {x} en un miembro y los términos independientes en el otro.

 

{\begin{array}{rcl} \displaystyle\frac{x+1}{6}-\frac{3(x-2)}{8}&=&x-6 \\ && \\ \displaystyle\frac{x+1}{6}-\frac{3x-6}{8}&=&x-6 \\ && \\ 24\left(\displaystyle\frac{x+1}{6}-\frac{3x-6}{8}\right)&=&24(x-6) \\ && \\ 4(x+1)-3(3x-6)&=&24(x-6) \\ && \\ 4x+4-9x+18&=&24x-144 \\ && \\ 4x-9x-24x&=&-144-4-18 \end{array}}

 

4 Reducimos los términos semejantes.

 

{\begin{array}{rcl} \displaystyle\frac{x+1}{6}-\frac{3(x-2)}{8}&=&x-6 \\ && \\ \displaystyle\frac{x+1}{6}-\frac{3x-6}{8}&=&x-6 \\ && \\ 24\left(\displaystyle\frac{x+1}{6}-\frac{3x-6}{8}\right)&=&24(x-6) \\ && \\ 4(x+1)-3(3x-6)&=&24(x-6) \\ && \\ 4x+4-9x+18&=&24x-144 \\ && \\ 4x-9x-24x&=&-144-4-18 \\ && \\ -29x&=&-166 \end{array}}

 

5 Despejamos la incógnita.

 

{\begin{array}{rcl} \displaystyle\frac{x+1}{6}-\frac{3(x-2)}{8}&=&x-6 \\ && \\ \displaystyle\frac{x+1}{6}-\frac{3x-6}{8}&=&x-6 \\ && \\ 24\left(\displaystyle\frac{x+1}{6}-\frac{3x-6}{8}\right)&=&24(x-6) \\ && \\ 4(x+1)-3(3x-6)&=&24(x-6) \\ && \\ 4x+4-9x+18&=&24x-144 \\ && \\ 4x-9x-24x&=&-144-4-18 \\ && \\ -29x&=&-166 \\ && \\ x&=&\displaystyle\frac{166}{29} \end{array}}

Superprof

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (15 votes, average: 3,27 out of 5)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido

Publicar un comentario

avatar
  Subscribe  
Notify of