Uno de los conceptos más sencillos y útiles de entender en el cálculo es aprender a calcular las ecuaciones de primer y segundo grado. Estas son las dos principales ecuaciones que forman la base de todas las demás ecuaciones que involucran números complejos, como la ecuación cúbica, cuadrática, la hipérbola y la parábola. Aunque puede ser bastante difícil para un estudiante entender estas ecuaciones, es importante recordar que forman la base de casi todos los cursos avanzados de matemáticas en el cálculo. Por lo tanto, es importante dominar las técnicas para resolver problemas en esta área.

Una ecuación de primer grado es una ecuación cuya solución viene dada por Primero, el producto de sus variables (en este caso, x), y el valor medio de sus fórmulas integrales, como la matriz integral. Una ecuación de segundo grado es lo contrario de su homóloga de primer grado. Así, una solución de una ecuación de primer grado será siempre la suma de sus variables, mientras que las soluciones de una ecuación de segundo grado serán siempre iguales a los valores de primer grado de sus correspondientes variables. Además, las soluciones de las ecuaciones de tercer grado también son iguales a los valores de sus correspondientes variables, pero esto ocurre raramente.

 

En general para resolver una ecuación de primer grado debemos seguir los siguientes pasos:

 

1 Quitar paréntesis.

 

2 Quitar denominadores.

 

3 Agrupar los términos en {x} en un miembro y los términos independientes en el otro.

 

4 Reducir los términos semejantes.

 

5 Despejar la incógnita.

 

Ejemplo:

 

Resolver {2(x+1)-3(x-2)=x-6}

 

1 Quitamos paréntesis.

 

{\begin{array}{rcl} 2(x+1)-3(x-2)&=&x-6 \\ && \\ 2x+2-3x+6 & =&x-6 \end{array}}

 

2 Agrupamos los términos en {x} en un miembro y los términos independientes en el otro.

 

{\begin{array}{rcl} 2(x+1)-3(x-2)&=&x-6 \\ && \\ 2x+2-3x+6 & =&x-6 \\ && \\ 2x-3x-x & =& -6-2-6 \end{array}}

 

3 Reducimos los términos semejantes.

 

{\begin{array}{rcl} 2(x+1)-3(x-2)&=&x-6 \\ && \\ 2x+2-3x+6 & =&x-6 \\ && \\ 2x-3x-x & =& -6-2-6 \\ && \\ -2x & = & -14 \end{array}}

 

4 Despejamos la incógnita.

 

{\begin{array}{rcl} 2(x+1)-3(x-2)&=&x-6 \\ && \\ 2x+2-3x+6 & =&x-6 \\ && \\ 2x-3x-x & =& -6-2-6 \\ && \\ -2x & = & -14 \\ && \\ x&=&7 \end{array}}

 

Ejemplo:

 

Resolver {\displaystyle\frac{x+1}{6}-\frac{3(x-2)}{8}=x-6}

 

1 Quitamos paréntesis.

 

{\begin{array}{rcl} \displaystyle\frac{x+1}{6}-\frac{3(x-2)}{8}&=&x-6 \\ && \\ \displaystyle\frac{x+1}{6}-\frac{3x-6}{8}&=&x-6 \end{array}}

 

2 Quitamos los denominadores multiplicando ambos miembros por el mínimo común múltiplo de los denominadores {mcm(6, 8)=24}

 

{\begin{array}{rcl} \displaystyle\frac{x+1}{6}-\frac{3(x-2)}{8}&=&x-6 \\ && \\ \displaystyle\frac{x+1}{6}-\frac{3x-6}{8}&=&x-6 \\ && \\ 24\left(\displaystyle\frac{x+1}{6}-\frac{3x-6}{8}\right)&=&24(x-6) \\ && \\ 4(x+1)-3(3x-6)&=&24(x-6) \\ && \\ 4x+4-9x+18&=&24x-144 \end{array}}

 

3 Agrupamos los términos en {x} en un miembro y los términos independientes en el otro.

 

{\begin{array}{rcl} \displaystyle\frac{x+1}{6}-\frac{3(x-2)}{8}&=&x-6 \\ && \\ \displaystyle\frac{x+1}{6}-\frac{3x-6}{8}&=&x-6 \\ && \\ 24\left(\displaystyle\frac{x+1}{6}-\frac{3x-6}{8}\right)&=&24(x-6) \\ && \\ 4(x+1)-3(3x-6)&=&24(x-6) \\ && \\ 4x+4-9x+18&=&24x-144 \\ && \\ 4x-9x-24x&=&-144-4-18 \end{array}}

 

4 Reducimos los términos semejantes.

 

{\begin{array}{rcl} \displaystyle\frac{x+1}{6}-\frac{3(x-2)}{8}&=&x-6 \\ && \\ \displaystyle\frac{x+1}{6}-\frac{3x-6}{8}&=&x-6 \\ && \\ 24\left(\displaystyle\frac{x+1}{6}-\frac{3x-6}{8}\right)&=&24(x-6) \\ && \\ 4(x+1)-3(3x-6)&=&24(x-6) \\ && \\ 4x+4-9x+18&=&24x-144 \\ && \\ 4x-9x-24x&=&-144-4-18 \\ && \\ -29x&=&-166 \end{array}}

 

5 Despejamos la incógnita.

 

{\begin{array}{rcl} \displaystyle\frac{x+1}{6}-\frac{3(x-2)}{8}&=&x-6 \\ && \\ \displaystyle\frac{x+1}{6}-\frac{3x-6}{8}&=&x-6 \\ && \\ 24\left(\displaystyle\frac{x+1}{6}-\frac{3x-6}{8}\right)&=&24(x-6) \\ && \\ 4(x+1)-3(3x-6)&=&24(x-6) \\ && \\ 4x+4-9x+18&=&24x-144 \\ && \\ 4x-9x-24x&=&-144-4-18 \\ && \\ -29x&=&-166 \\ && \\ x&=&\displaystyle\frac{166}{29} \end{array}}

>

La plataforma que conecta profes particulares y estudiantes

¿Te ha gustado este artículo? ¡Califícalo!

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) 4,04 (96 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗