Los/las mejores profesores/as de Matemáticas que están disponibles
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (69 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
25€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (275 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Antonio c
4,9
4,9 (52 opiniones)
Antonio c
14€
/h
Gift icon
¡1a clase gratis!
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (69 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
25€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (275 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Antonio c
4,9
4,9 (52 opiniones)
Antonio c
14€
/h
Gift icon
¡1a clase gratis!
Vamos

Ecuación de segundo grado

Una ecuación de segundo grado es una ecuación polinómica cuyo grado es 2, es decir, una ecuación de segundo grado es toda expresión de la forma:


Si ninguno de los coeficientes y es cero diremos que la ecuación es completa, y si alguno es cero diremos que es incompleta.

La ecuación de segundo grado se resuelve aplicando la siguiente fórmula

llamada fórmula general. Dada una ecuación de segundo grado completa, llamaremos discriminante al radicando de la ecuación anterior, es decir

El discriminante permite averiguar en cada ecuación el número de soluciones, y podemos distinguir tres casos: cuando el discriminante es mayor que cero, igual a cero y menor que cero.

Discriminante mayor a cero

Cuando , la ecuación tiene dos soluciones reales distintas.

Supongamos que y son las dos soluciones reales distintas, entonces la factorización en este caso es

Ejemplo

Sea . Notemos que y

por lo tanto, debe tener dos soluciones reales distintas. Calculemos con la fórmula general las soluciones


entonces

Por lo que la factorización sería

Discriminante igual a cero

Cuando , la ecuación tiene una solución doble, es decir una solución con multiplicidad 2.

Supongamos que es la solución doble de la ecuación, entonces la factorización sería

Ejemplo

Sea . En este caso y

por lo que tiene una solución doble. Usando la fórmula general calculemos la solución

Y la factorización queda

Discriminante menor a cero

Cuando , la ecuación no tiene soluciones reales. En este caso al no tener soluciones reales, no se puede factorizar en los reales.

Ejemplo

Sea . En este caso y

Con la formula general notemos que

¿Te ha gustado este artículo? ¡Califícalo!

4,00 (28 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗