Los/las mejores profesores/as de Matemáticas que están disponibles
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (71 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
30€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (275 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Antonio c
4,9
4,9 (54 opiniones)
Antonio c
14€
/h
Gift icon
¡1a clase gratis!
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (71 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
30€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (275 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Antonio c
4,9
4,9 (54 opiniones)
Antonio c
14€
/h
Gift icon
¡1a clase gratis!
Vamos

Razones trigonométricas

Observemos el siguiente triángulo rectángulo:

triangulo rectangulo

Las razones o funciones trigonométricas para el ángulo las definimos de la siguiente manera:

1 Seno:

Observemos que, en ocasiones, el seno se suele denotar como .

2 Coseno:

3 Tangente:

La tangente en ocasiones se suele denotar como .

4 Cotangente:

La cotangente en ocasiones se suele denotar como .

5 Secante:

6 Cosecante:

En algunas ocasiones, la cosecante se denota como .

En las identidades sucesivas utilizaremos y para denotar a los ángulos (en lugar de , o ).

Identidades pitagóricas

Recordemos que una identidad trigonométrica es una relación que involucra funciones trigonométricas y que se cumple para todos los ángulos del dominio. Estas identidades son muy útiles al momento de resolver integrales, ecuaciones diferenciales y otros problemas matemáticos.

Como la funciones trigonométricas se definen a partir de triángulos rectángulos, entonces se cumplen las siguientes identidades:

1

2

3

Identidades de la suma y diferencia de ángulos

1

2

3

4

5

6

Identidades del ángulo doble y del ángulo medio

Las identidades del ángulo doble las podemos obtener a partir de las identidades de suma de ángulo (con ). Por otro lado, las identidades del ángulo medio las obtenemos a partir de la identidad del ángulo doble de .

Ángulo Doble

1

2

3

Ángulo medio

1

2

3

Notemos que la tangente del ángulo medio también satisface las siguientes identidades:

y

Identidades para la reducción de potencias

1

2

Transformación de suma a producto y viceversa

Transformación de suma a producto

1

2

3

4

5

Transformación de producto a suma

1

2

3

4

Teoremas del seno, del coseno y de la tangente

Los teoremas del seno, coseno y tangente nos permiten calcular lados o ángulos restantes cuando nuestro triángulo no es rectángulo. Observa la siguiente figura:

triangulo general

1 Teorema del seno: Dado un triángulo (no necesariamente rectángulo) con lados , y , con sus respectivos ángulos opuestos , y , se satisface

Nota: si tenemos dos ángulos y un lado, entonces el teorema del seno lo utilizaremos para calcular los dos lados restantes (el ángulo restante lo calculamos al recordar que la suma de los ángulos es ).

2 Teorema del coseno: Dado un triángulo (no necesariamente rectángulo) con lados , y , con sus respectivos ángulos opuestos , y , se satisface

Similarmente, se cumple que

y

Nota: si tenemos la longitud de los tres lados, entonces utilizamos el teorema del coseno para calcular los ángulos. Asimismo, si tenemos dos lados y el ángulo que está entre ellos, entonces utilizamos el teorema del coseno para calcular los dos ángulos y el lado restantes.

3 Teorema de la tangente: Dado un triángulo (no necesariamente rectángulo) con lados , y , con sus respectivos ángulos opuestos , y , se satisface

Fórmulas para calcular el área de un triángulo

Por último, daremos algunas fórmulas para calcular el área de un triángulo. En estas fórmulas el área se denota con :

1 Si denota la base y la altura (que es perpendicular a la base ), entonces el área se calcula utilizando

2 Consideremos el triángulo con lados , y , con sus respectivos ángulos opuestos , y , entonces el área se calcula utilizando

En la siguiente figura podemos apreciar la altura que es perpendicular a , de ahí se ve claramente que , que es donde se deduce la fórmula.

triangulo y su altura

3 Si denota al radio de la circunferencia circunscrita (o circunradio), entonces el área se calcula utilizando

En la siguiente figura apreciamos la circunferencia circunscrita, denotamos su radio con .

triangulo y circunferencia circunscrita

4 Si denota el radio de la circunferencia inscrita (o inradio), entonces el área se calcula mediante

donde denotamos como al perímetro del triángulo.

Se puede apreciar la circunferencia inscrita en la siguiente figura. Denotamos con a su radio.

triángulo y circunferencia inscrita

5 Fórmula de Herón: Sea el semiperímetro del triángulo con lados , y , es decir,

entonces el área se calcula utilizando

¿Te ha gustado este artículo? ¡Califícalo!

4,31 (213 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗