En trigonometría tenemos muchas identidades que relaciones las funciones seno, coseno y tangente, tales como la identidad para el seno, coseno o tangente de suma o resta de ángulo. En este caso mostramos las razones correspondientes a el seno, coseno y tangente para la mitad de un ángulo.Dado un ángulo consideremos las siguientes identidades trigonométricas,

Los/las mejores profesores/as de Matemáticas que están disponibles
Amin
5
5 (338 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (72 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (56 opiniones)
Agustina
30€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Pedro
5
5 (134 opiniones)
Pedro
15€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (281 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Amin
5
5 (338 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (72 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (56 opiniones)
Agustina
30€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Pedro
5
5 (134 opiniones)
Pedro
15€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (281 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Vamos

Seno del ángulo mitad

Utilizando las identidades anteriores obtenemos la siguiente formula para el seno de la mitad de un ángulo

Finalmente, dividiendo por dos y sacando raíz obtenemos,

Ejemplo

Como ejemplo tomamos el ángulo y deseamos calcular seno de este ángulo,

Coseno del ángulo mitad

Utilizando las identidades anteriores obtenemos la siguiente formula para el coseno de la mitad de un ángulo

Finalmente, dividiendo por dos y sacando raíz obtenemos,

Ejemplo

Como ejemplo tomamos el ángulo y deseamos calcular coseno de este ángulo,

Tangente del ángulo mitad

Utilizando las formulas para el seno y el coseno de un ángulo medio obtenemos una formula para la tangente de un ángulo medio,

Finalmente obtenemos que

Ejemplo

Como ejemplo tomamos el ángulo y deseamos calcular tangente de este ángulo,

¿Te ha gustado este artículo? ¡Califícalo!

4,00 (40 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗