Los/las mejores profesores/as de Matemáticas que están disponibles
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (71 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
30€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (275 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Antonio c
4,9
4,9 (54 opiniones)
Antonio c
14€
/h
Gift icon
¡1a clase gratis!
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (71 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
30€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (275 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Antonio c
4,9
4,9 (54 opiniones)
Antonio c
14€
/h
Gift icon
¡1a clase gratis!
Vamos

Razones trigonométricas en un triángulo rectángulo

representación gráfica de seno en el triángulo ABC

Seno

El seno del ángulo B es la razón entre el cateto opuesto al ángulo y la hipotenusa. Se denota por sen B.

fórmula de seno

representación gráfica de coseno en el triángulo ABC

Coseno

El coseno del ángulo B es la razón entre el cateto adyacente o contiguo al ángulo y la hipotenusa. Se denota por cos B.

fórmula del coseno

representación gráfica de tangente en el triángulo ABC

Tangente

La tangente del ángulo B es la razón entre el cateto opuesto al ángulo y el cateto adyacente al ángulo. Se denota por tan B o tg B.

fórmula de tangente

Cosecante

La cosecante del ángulo B es la razón inversa del seno de B.

Se denota por csc B o cosec B.

fórmula de cosecante

representación gráfica de secante en el triángulo ABC

Secante

La secante del ángulo B es la razón inversa del coseno de B.

Se denota por sec B.

fórmula de secante

Cotangente definicion

Cotangente

La cotangente del ángulo B es la razón inversa de la tangente de B.

Se denota por cot B o ctg B.

fórmula de cotangente

SOH-CAH-TOA: Una manera sencilla de recordar

SOH-CAH-TOA es un acrónimo que se usa para poder memorizar las definiciones de las razones trigonométricas más importantes: seno, coseno y tangente. La siguiente tabla explica su significado.


tabla sencilla para recordar las razones trigonométricas

Para las otras razones trigonométricas, en vez de crear otro acrónimo, es más sencillo aprenderse el hecho de que la cosecante, secante y cotangente, son opuestos multiplicativos del seno, coseno y tangente, respectivamente. En la siguiente tabla se detalla.

Razones trigonométricas en una circunferencia

Se llama circunferencia goniométrica o círculo unitario a aquella que tiene su centro en el origen de coordenadas y su radio es la unidad.

Si consideramos un triángulo rectángulo dentro del círculo con el radio forma la hipotenusa y uno de los catetos está sobre el eje X, obtendremos una figura como la siguiente.

circulo trigonometrico
Calculamos el seno y coseno del ángulo

Concluímos que

El seno es la ordenada de P, es decir del punto que está sobre la circunferencia.

El coseno es la abscisa de P, es decir del punto que está sobre la circunferencia.

Otro dato que podemos deducir es que los valores de seno y coseno están entre 1 y -1.

-1 ≤ sen α ≤ 1

-1 ≤ cos α ≤ 1

Cabe destacar que la razón por la que se consideran las funciones trigonométricas en el círculo es para poder tomar ángulo más grandes. Por ejemplo, del un triángulo rectángulo no podría saber cuánto es , porque no puedo construir un triángulo rectángulo con un ángulo de 150°.

Funciones trigonometricas para angulos obtusos
El círculo unitario me permite hacer ese cálculo. Lo que hago es:
1 Localizo el ángulo de 150° que se forma a partir del eje X en dirección opuesta a las manecillas del reloj.
2 Considero el punto sobre la circunferencia que se forma con el ángulo

  • La ordenada de ese punto es el seno
  • La abscisa es el coseno

Para las otras razones trigonométricas consideramos la siguiente figura

interpretacion geometrica de las razones trigonometricas

QOP y TOS son triángulos semejantes. Entonces,

QOP y T'OS′ son triángulos semejantes. Entonces,

Usando las definiciones de las razones trigonométricas y las relaciones entre los triángulos semejantes obtenemos

Signo de las razones trigonométricas

En la circunferencia goniométrica los ejes de coordenadas delimitan cuatro cuadrantes que se numeran en sentido contrario a las agujas del reloj. Recordemos que si consideramos un ángulo y tomamos el triángulo rectángulo dentro del círculo que se genera con dicho ángulo, el signo de el seno o coseno de este ángulo dependerá de en cuál cuadrante se ubique el triangulo.

signos del seno y coseno

Tabla de razones trigonométricas

tabla de razones trigonométricas con angulos destacados

Relaciones pitagóricas entre las razones trigonométricas

Explicación:

circulo trigonometrico
Como el triángulo que se considera dentro del círculo es rectángulo se cumple que



En la imagen, los catetos (a y b) corresponden a los valores x y y, y la hipotenusa al radio, o sea , 1.
Entonces
Como x es la abscisa y y la ordenada sabemos que estos valores corresponden al coseno y seno respectivamente. Entonces,


De divir la ecuación anterior por obtengo



Si en cambio hubiera dividido por obtendría


Relaciones entre las razones trigonométricas de algunos ángulos

Ángulos complementarios

Se dice que dos ángulos  son complementarios si su suma es 90°, es decir, un ángulo recto.

representación gráfica de circulo circunscrito y ángulos complementarios

Ángulos suplementarios

Se dice que dos ángulos  son suplementarios si su suma es 180°.

representación gráfica de circulo circunscrito y angulos suplementarios

Ángulos que difieren en 180°

representación gráfica de circulo circunscrito y angulos que difieren por 180 grados

Ángulos opuestos

representación gráfica de circulo circunscrito y angulos opuestos

Ángulos negativos

representación gráfica de circulo circunscrito y angulos negativos

Mayores de 360º

representación gráfica de circulo circunscrito y ángulos mayores de 360 grados

Ángulos que difieren en 90º

representación gráfica de circulo circunscrito y Ángulos que difieren en 90º

Ángulos que suman en 270º

representación gráfica de circulo circunscrito y Ángulos que suman en 270

Ángulos que difieren en 270º

representación gráfica de circulo circunscrito y ángulos que diferen en 270 grados

Razones trigonométricas de la suma y diferencia de ángulos

Razones trigonométricas del ángulo doble

Razones trigonométricas del ángulo mitad

Transformaciones de sumas en productos

Transformaciones de productos en sumas

Ejercicios de cálculo de seno, coseno, y tangente

1

Calcule seno, coseno y tangente de :

Solución

1 Seno


 

2 Coseno

 

 

3 Tangente

 

2

Calcule seno, coseno y tangente de :

Solución

1 Seno


 

2 Coseno

 

 

3 Tangente

 

3

Calcule seno, coseno y tangente de :

Solución

1 Seno


 

2 Coseno

 

 

3 Tangente

 

4

Calcule seno, coseno y tangente de :

Solución

1 Seno


 

2 Coseno

 

 

3 Tangente

 

5

Calcule seno, coseno y tangente de :

Solución

1 Seno

 

 

2 Coseno

 

 

3 Tangente

 

¿Buscas algún curso de matematicas primaria? Descubre nuestra oferta en Superprof. Podrás contactar con nuestros profes, ya busques un profesor de matematicas online o uno presencial.

¿Te ha gustado este artículo? ¡Califícalo!

4,36 (143 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗