Teorema del seno
Cada lado de un triángulo es directamente proporcional al seno del ángulo opuesto.
Aplicaciones
Este teorema es útil para resolver problemas si los datos dados entran en alguno de los siguientes casos:
1 Si tenemos las medidas de 2 lados de un triángulo, y el ángulo opuesto a uno de ellos.
Aplicando el teorema inmediatamente puedo obtener el ángulo opuesto al otro lado que conocemos
2 Si tenemos las medidas de 2 ángulos de un triángulo, y el lado opuesto a uno de ellos.
Aplicando el teorema inmediatamente puedo obtener el lado opuesto al otro ángulo que conocemos.
3 También se puede aplicar cuando se conocen 2 ángulos del triángulo y un lado que no es opuesto a ninguno de ellos, sólo que requiere un paso extra, que es obtener el otro ángulo del triángulo.
Esto es posible porque sabemos que la suma de los ángulos de un triángulo es 180°.
Por ejemplo, en la imagen de arriba, el ángulo B se obtiene de restar los otros 2 ángulos a 180:
Ignorando uno de los ángulos dados originalmente, ya tenemos los datos de 2 ángulos y el lado opuesto de uno de ellos, como el segundo caso mencionado en las aplicaciones.
Teorema del coseno
En un triángulo el cuadrado de cada lado es igual a la suma de los cuadrados de los otros dos menos el doble producto del producto de ambos por el coseno del ángulo que forman.
Aplicaciones
Este teorema es útil para resolver problemas,
1 Si tenemos la medida de un ángulo y de los lados adyacentes a este.
Aplicando el teorema podemos obtener el tercer lado, es decir el lado opuesto al ángulo que tenemos, pues
2 Si tenemos la medida de los 3 lados de un triángulo
Aplicando el teorema podemos obtener cualquier ángulo, pues
Teorema de la tangente
El teorema de la tangente relaciona un par de lados de un triángulo y sus respectivos ángulos opuestos
Aplicaciones:
Este teorema es igual de útil que el teorema del seno y del coseno, pero es menos popular.
Se puede usar en cualquiera de los casos en los que:
1 Se conocen dos lados y un ángulo opuesto.
2 Se conocen dos ángulos y un lado opuesto.
Área de un triángulo
1 El área de un triángulo es la mitad del producto de una base por la altura correspondiente.
Por definición
De sustituir en la fórmula del área anterior, obtenemos el siguiente resultado.
2 El área de un triángulo es el semiproducto de dos de sus lados por el seno del ángulo que forman.
3 El área de un triángulo es el cociente entre el producto de sus lados y cuatro veces el radio de su circunferencia circunscrita.
4 El área de un triángulo es igual al producto del radio de la circunferencia inscrita por su semiperímetro
.
5 Fórmula de Herón: Sea el semiperímetro del triángulo, entonces,
La plataforma que conecta profes particulares y estudiantes
Apuntes es una plataforma dirigida al estudio y la práctica de las matemáticas a través de la teoría y ejercicios interactivos que ponemos a vuestra disposición. Esta información está disponible para todo aquel/aquella que quiera profundizar en el aprendizaje de esta ciencia. Será un placer ayudaros en caso de que tengáis dudas frente algún problema, sin embargo, no realizamos un ejercicio que nos presentéis de 0 sin que hayáis si quiera intentado resolverlo. Ánimo, todo esfuerzo tiene su recompensa.
Hola buenaa tardes me podrias ayudar en una pregunta que dice ¿Enque año se suspendio el seno?¿Por que ?
hola disculpa me podrían ayudar con el ejercicio es un triangulo tiene a:4cm b:3 c:?? con el teorema de Herodes
Un satélite meteorológico que orbita alrededor de la Tierra pasa directamente sobre dos antenas las cuales entre ellas existe una distancia de 80.46 Km. En cierto momento el ángulo de elevación de cada satélite es de 87 grados y 1.4695 radianes. Determina la distancia que existe entre el satélite y cada una de las antenas.
Necesito que meayunden con la ley del seno
Ejemplo un vehículo inicia surecorido 300metros alcia el norte y luego jira bruscamente 20°grados al noroeste para luego acelerar 90 kilómetros de teniéndose a 400 kilómetros adelante ¿cuál es su trayectoria?¿cuál es la velocidad media y cual es el ángulo de la trayectoria
Es pero que me puedan ayudar
Me podria ayudar resolviendo este ejercicio.
Dice asi: De un triangulo de 20 cm de coseno y 10 cm de seno, indicar el valor de la hipotenusa y dar resultados mediante la formula de seno, coseno, tangente. Gracias
La clase es propiedades de la adiccion (+) y sustraccion (-) cumplen las siguientes propiedades escribe al frente las propiedadsmes utilizada