Un triángulo es oblicuángulo si no es recto ninguno de sus ángulos.

Para resolver triángulos oblicuángulos vamos a utilizar los teoremas del seno y del coseno.

Dependiendo de los elementos que conozcamos, nos encontramos con cuatro tipos de resolución de triángulos oblicuángulos:

Los/las mejores profesores/as de Matemáticas que están disponibles
Amin
5
5 (334 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (69 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
22€
/h
Gift icon
¡1a clase gratis!
Pedro
5
5 (133 opiniones)
Pedro
15€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
17€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (271 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Amin
5
5 (334 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (69 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
22€
/h
Gift icon
¡1a clase gratis!
Pedro
5
5 (133 opiniones)
Pedro
15€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
17€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (271 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Vamos

Conociendo un lado y dos ángulos adyacentes a él

Supongamos que se conocen el lado y sus ángulos adyacentes . Para encontrar el ángulo y los lados restantes realizamos

triangulo oblicuangulo 1

1 Para encontrar el ángulo restante aplicamos

2 Para calcular aplicamos el teorema de los senos

Multiplicando ambos lados de la ecuación por se obtiene

3 Para calcular aplicamos el teorema de los senos

Multiplicando ambos lados de la ecuación por se obtiene

Conociendo dos lados y el ángulo comprendido

Supongamos que se conocen los lados y el ángulo . Para encontrar el lado y los ángulos restantes realizamos

triangulo oblicuangulo 2

1 Para encontrar el lado restante aplicamos el teorema de los cosenos

2 Para calcular el ángulo aplicamos el teorema de los senos, considerando los recíprocos

Multiplicando ambos lados de la ecuación por se obtiene

Buscamos los valores de que satisfacen la igualdad. Observa que hay dos valores para , uno en el primer cuadrante y otro en el segundo cuadrante

3 Para encontrar el ángulo faltante, aplicamos el resultado de que la suma de los ángulos interiores de un triángulo es y despejamos el ángulo que nos interesa. Debes realizarlo para cada uno de los valores de

Para determinar cual de las parejas de ángulos es correcta, debes verificar cual de ellas satisface el teorema del seno

Conociendo dos lados y un ángulo opuesto

Supongamos que se conocen los lados y el ángulo . Para encontrar el lado y los ángulos restantes, primero analizamos el seno del ángulo opuesto al lado conocido empleando el teorema del seno

triangulo oblicuangulo 3

Despejamos y analizamos su valor para determinar si tiene solución y con ello conluir si es posible encontar lo elementos restantes del triángulo.

No hay solución

Si , la ecuación no tiene solución, este se debe a que el seno de un ángulo no puede ser mayor que 1.

Solución única

Si , la ecuación tiene una única solución por lo que se trata de un triángulo rectángulo.

Una o dos soluciones

Si , la ecuación tiene una o dos soluciones dependiendo de los valores de :

Si se tiene una  solución.

Si se tiene dos  soluciones.

Conociendo los tres lados

Supongamos que se conocen los tres lados del triángulo. Para los ángulos realizamos lo siguiente

triangulo oblicuangulo 4

1 Para encontrar el primer ángulo, digamos el ángulo , aplicamos el teorema del coseno

Despejamos y encontramos el valor de que se encuentra en el primer cuadrante

2 Para calcular el segundo ángulo aplicamos nuevamente el teorema del coseno

3 Para calcular el tercer ángulo aplicamos

Ejercicios

Encontrar los elementos restantes de cada uno de los triángulos con los siguientes datos:

1

triangulo oblicuangulo 5

Se trata de un triángulo del cual conocemos un lado y dos ángulos adyacentes a el, por lo que aplicamos las fórmulas obtenidas anteriormente para el primer tipo de resolución.

1 Encontramos el tercer ángulo

2 Para encontrar el lado , aplicamos el teorema del seno y obtenemos

Sustituyendo los valores conocidos, se obtiene

3 Para encontrar el lado faltante, aplicamos el teorem del seno y obtenemos

Sustituyendo los valores conocidos se obtiene

2

triangulo oblicuangulo 6

Se trata de un triángulo del cual conocemos dos lados y el ángulos comprendido, por lo que aplicamos las fórmulas obtenidas anteriormente para el segundo tipo de resolución.

1 Aplicamos el teorema del coseno para encontrar el tercer lado

2 Aplicamos el teorema del seno para encontrar uno de los dos ángulos faltantes

Sustituyendo los valores conocidos, se obtiene

3 Encontramos el ángulo faltante. Observa que se obtiene un valor para cada uno de los valores de

Si , entonces

Si , entonces

Determinamos cual de las parejas de ángulos es correcta

Si

Si

Así, la pareja de ángulos buscada es

3

triangulo oblicuangulo 7

Se trata de un triángulo del cual conocemos dos lados y un ángulo opuesto, por lo que aplicamos las fórmulas obtenidas anteriormente para el tercer tipo de resolución.

1 A partir del teorema del seno tenemos que . Como el seno de un ángulo nunca puede ser mayor que 1, el problema no tiene solución. La figura muestra la imposibilidad de que exista el triángulo planteado.

4

triangulo rectangulo

Se trata de un triángulo del cual conocemos dos lados y un ángulo opuesto, por lo que aplicamos las fórmulas obtenidas anteriormente para el tercer tipo de resolución.

1 A partir del teorema del seno tenemos que , la ecuación tiene una única s0lución por lo que se trata de un triángulo rectángulo.

2 Calculamos el ángulo restante

3 Encontramos el lado faltante aplicando el teorema de Pitágoras

5

Se trata de un triángulo del cual conocemos dos lados y un ángulo opuesto, por lo que aplicamos las fórmulas obtenidas anteriormente para el tercer tipo de resolución.

1 A partir del teorema del seno tenemos que , la ecuación tiene una o dos s0luciones

2 Calculamos los valores para el ángulo

Como solo es válida la solución

3 Encontramos el ángulo faltante

4 Aplicando el teorema del seno encontramos el lado faltante

6

Se trata de un triángulo del cual conocemos dos lados y un ángulo opuesto, por lo que aplicamos las fórmulas obtenidas anteriormente para el tercer tipo de resolución.

1 A partir del teorema del seno tenemos que , la ecuación tiene una o dos s0luciones

2 Calculamos los valores para el ángulo

Como ambas soluciones son válidas

3 Encontramos el ángulo faltante

4 Aplicando el teorema del seno encontramos el lado faltante

7

1 Para encontrar el primer ángulo, digamos el ángulo , aplicamos el teorema del coseno, despejamos y encontramos el valor de que se encuentra en el primer cuadrante

2 Para calcular el segundo ángulo aplicamos nuevamente el teorema del coseno y encontramos el valor en el primer cuadrante

3 Para calcular el tercer ángulo aplicamos

¿Te ha gustado este artículo? ¡Califícalo!

4,00 (25 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗