Se llama ángulo de dos rectas al menor de los ángulos que forman éstas. 

 

representación gráfica de angulo de 2 rectas

 

Se puede obtener a partir de:

1 Sus vectores directores.

Si consideramos a los vectores \displaystyle \vec{u}=(u_1,u_2) y \displaystyle \vec{v}=(v_1,v_2) como los vectores directores de las rectas \displaystyle s y \displaystyle r respectivamente, entonces el coseno del ángulo que forman las rectas es:

 

\displaystyle \cos(\alpha)=\frac{\left |u_1v_1+u_2v_2\right |}{\sqrt{u_1^2+u_2^2}\sqrt{v_1^2+v_2^2}}

2Las pendientes de las rectas.

Si \displaystyle m_1 es la pendiente de la recta \displaystyle r y \displaystyle m_2 la pendiente de la recta \displaystyle s, entonces podemos ocupar la siguiente fórmula para encontrar la tangente del ángulo comprendido entre las rectas, y en consecuencia el ángulo:

 

\displaystyle \tan(\alpha)=\left |\frac{m_2-m_1}{1+m_2m_1} \right |

 

Si \displaystyle m_1m_2=-1, significa que ambas rectas son perpendiculares \displaystyle \alpha = 90^{\circ}

 

Ejemplos

1 Calcular el ángulo que forman las rectas \displaystyle s y \displaystyle r

sabiendo que sus vectores directores son: \displaystyle \vec{u}=(-2,1) y \displaystyle \vec{v}=(2,-3).

 

Primero calculemos el coseno del ángulo:

 

\displaystyle \cos(\alpha)=\frac{\left | (-2)(2)+(1)(-3) \right |}{\sqrt{4+1}\sqrt{4+9}}=\frac{7}{\sqrt{65}}

 

ahora, ya podemos calcular el ángulo solicitado

 

\displaystyle \alpha=\arccos \left (\frac{7}{\sqrt{65}} \right )=29.74^{\circ}

 

2 Dadas las rectas \displaystyle 3x+y-1=0 y \displaystyle 2x+ay-8=0

determinar \displaystyle a para que formen un ángulo de \displaystyle 45^{\circ}.

 

Primero tomemos en cuenta que si nos dan a una recta de referencia y nos piden encontrar a otra que se encuentre a \displaystyle 45^{\circ}, significa que estamos buscando a dos posibles, ya que los grados se pueden formar tanto en el sentido del reloj como el contrario, en otras palabras analizaremos los dos casos: \displaystyle \tan(45^{\circ})=1 y \displaystyle \tan(-45^{\circ})=-1

 

Primero llevemos a la forma pendiente-ordenada al origen a cada una de las dos rectas

 

\displaystyle y=\frac{-2}{a}x+\frac{8}{a}, significa que \displaystyle m_1=-\frac{2}{a}

 

\displaystyle y=-3x+1, significa que \displaystyle m_2=-3

 

y entonces, ya que tenemos a ambas pendientes establecemos la primer ecuación, basados en que \tan(45^{\circ})=1

    \begin{align*} 1&=\frac{-3+\frac{2}{a}}{1+(-\frac{2}{a})(-3)} \\ 1&=\frac{-3a+2}{a+6} \\ a+6&=-3a+2 \\ 4a&=-4 \\ a&=-1 \end{align*}

 

teniendo así nuestro primer valor \displaystyle a=-1

 

Ahora veamos para el caso donde \tan(-45^{\circ})=-1

 

    \begin{align*} -1&=\frac{-3+\frac{2}{a}}{1+(-\frac{2}{a})(-3)} \\ -1&=\frac{-3a+2}{a+6} \\ -a-6&=-3a+2 \\ 2a&=8 \\ a&=4 \end{align*}

 

llegando a nuestro segundo valor \displaystyle a=4

Superprof

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (9 votes, average: 3,67 out of 5)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido

Publicar un comentario

avatar
  S’abonner  
Notifier de