En este apartado estudiaremos el circuncentro de un triángulo. También veremos cómo calcular las mediatrices de un triángulo y el área de la circunferencia que pasa los vertices de un triángulo.

Los/las mejores profesores/as de Matemáticas que están disponibles
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (71 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (56 opiniones)
Agustina
30€
/h
Gift icon
¡1a clase gratis!
Pedro
5
5 (134 opiniones)
Pedro
15€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (278 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Antonio c
4,9
4,9 (54 opiniones)
Antonio c
14€
/h
Gift icon
¡1a clase gratis!
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (71 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (56 opiniones)
Agustina
30€
/h
Gift icon
¡1a clase gratis!
Pedro
5
5 (134 opiniones)
Pedro
15€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (278 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Antonio c
4,9
4,9 (54 opiniones)
Antonio c
14€
/h
Gift icon
¡1a clase gratis!
Vamos

Mediatrices y circuncentro de un triángulo

A continuación presentamos las definiciones de circuncentro y mediatriz.

Las mediatrices de un triángulo son las rectas perpendiculares trazadas por los puntos medios de sus lados.

Circuncentro

El circuncentro es el punto de corte de las tres mediatrices.

El circuncentro se expresa con la letra .

El circuncentro es el centro de una circunferencia circunscrita al triángulo.

Ejercicio

Hallar las ecuaciones de las mediatrices y el circuncentro del triángulo de vértices: y

Calculo de mediatrices

Paso 1: Ecuación de la mediatriz que pasa por el punto medio de

En primer lugar hallamos el punto medio de . Para esto solo debemos restar las coordenadas de los puntos y y luego dividir por , es decir,

Lo siguiente es hallar la pendiente de la perpendicular al lado .  Ya que la pendiente de la recta que pasa por los puntos y es

y el producto de las pendientes de una recta y su perpendicular es -1, entonces la pendiente de nuestra mediatriz es

Finalmente aplicamos la ecuación punto-pendiente, tenemos que la ecuación de la recta mediatriz es

Paso 2: Ecuación de la mediatriz que pasa por el punto medio de

Procedemos de manera símiliar al paso anterior. En primer lugar hallamos el punto medio de . Para esto solo debemos restar las coordenadas de los puntos y y luego dividir por , es decir,

Lo siguiente es hallar la pendiente de la perpendicular al lado .  Ya que la pendiente de la recta que pasa por los puntos y es

y el producto de las pendientes de una recta y su perpendicular es -1, entonces la pendiente de nuestra mediatriz es

Finalmente aplicamos la ecuación punto-pendiente, tenemos que la ecuación de la recta mediatriz al segmento es

Paso 3: Ecuación de la mediatriz que pasa por el punto medio de

Procedemos de manera símiliar a los pasos anteriores. En primer lugar hallamos el punto medio de . Para esto solo debemos restar las coordenadas de los puntos y y luego dividir por , es decir,

Lo siguiente es hallar la pendiente de la perpendicular al lado .  Ya que la pendiente de la recta que pasa por los puntos y es

y el producto de las pendientes de una recta y su perpendicular es -1, entonces la pendiente de nuestra mediatriz es

Finalmente aplicamos la ecuación punto-pendiente, tenemos que la ecuación de la recta mediatriz al segmento es

Paso 4: Hallar el circuncentro.

El circuncentro es el punto de corte de las tres mediatrices. Para calcularlo, se resuelve el sistema formado por dos de las ecuaciones.

El circuncentro es

Área de la circunferencia circunscrita

El circuncentro es el centro de la de la circunferencia circunscrita, es decir, la que pasa por los tres vértices.

Circunferencia circunscrita

Hallaremos el área de la circunferencia circunscrita para el ejemplo anterior. El radio de la circunferencia circunscrita es la distancia entre dos puntos: el circuncentro y cualquier vértice del triángulo. En este caso tomaremos el punto y el circuncentro

Ya que el área de una circunferencia es igual a por el radio al cuadrado, entonces el área de nuestra circunferencia circunscrita es

¿Te ha gustado este artículo? ¡Califícalo!

4,00 (33 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗