Capítulos
Ecuación vectorial
En esta sección aprenderás a representar vectorialmente a todos los puntos
que pertenezcan a un plano llamado
.
Para esto, necesitamos a un punto fijo del plano
y a dos vectores con direcciones distintas
y
llamados vectores directores.
Los vectores
y
se denominan directores, ya que son los encargados de establecer las direcciones para generar a los puntos
del plano
, dichos vectores se consideran en el plano.
La construcción de la ecuación vectorial es la siguiente:
- Consideremos a
como un punto de referencia del plano 
- Consideramos a un vector en el plano
que comienza en
y termina en
, dicho vector se puede construir de la siguiente manera

- Ahora, como
y
también pertenecen a
y no tienen la misma dirección, es posible encontrar a escalares
y
respectivamente, tales que sea posible crear a los vectores
y
cuya suma sea
, es decir:


Entonces con esta igualdad ya es posible comenzar a desarrollar:

es decir:

llegando a la ecuación en su forma vectorial de los elementos del plano
:

Ecuaciones paramétricas del plano
Operando en la ecuación vectorial del plano llegamos a la igualdad:

Esta igualdad se verifica si:

obteniendo así las ecuaciones paramétricas del plano.
Ecuación general o implícita del plano
Un punto
está en el plano
si tiene solución el sistema:

Este sistema tiene que ser compatible determinado en las incógnitas
y
· Por tanto el determinante de la matriz ampliada del sistema con la columna de los términos independientes tiene que ser igual a cero.

Desarrollamos el determinante.

y si asignamos los valores:

Sustituimos:

si desarrollamos ahora llegamos a:

y con la siguiente igualdad:

obtenemos la ecuación general de plano:

Vector normal
Vamos a construir la ecuación de un plano
usando otros elementos.
Primero consideremos a un vector perpendicular al plano llamado vector normal
, y además a un punto fijo del plano 

Sea
cualquier punto del plano.
Construimos al vector dirigido de
a
de la misma forma que anteriormente lo hicimos:

tal vector es perpendicular a
ya que pertenece a
, y
se consideró perpendicular a todo vector del plano.
Entonces, por ser perpendiculares ambos vectores, su producto escalar vale cero:

de este modo también se puede determinar la ecuación general del plano, a partir de un punto y un vector normal.
Ecuación canónica o segmentaria del plano
Sean
,
y
tres vectores en el espacio por donde pasa el plano
que se encuentran sobre los ejes de referencia.

Construyamos a la ecuación de
en su forma canónica partiendo de su forma general.
Supongamos que tenemos a la ecuación en su forma general del plano
:

donde
,
,
y
son todos números reales distintos de cero.
De la ecuación general restemos de ambos lados a
y posteriormente dividamos a ambos lados entre
, quedando así el proceso:

y si ahora estructuramos a las fracciones queda:

donde los denominadores coinciden exactamente con los valores
,
y
de los vectores en el espacio que se mencionaron inicialmente, de esta manera si:

entonces ya tenemos a la ecuación de
en su forma canónica:

,
,
y
deben ser todos distintos de cero para evitar la indeterminación.Ejercicios
1Hallar las ecuaciones paramétricas e implícitas del plano que pasa por el punto
y tiene como vectores directores a
y
.
Como tenemos a un punto del plano y a sus dos vectores directores, simplemente sustituimos los valores en las ecuaciones en su forma paramétrica del plano, quedando entonces:

para que ahora conozcamos a la ecuación del plano en forma implícita, proponemos a la siguiente igualdad y resolvemos el determinante:

quedando de esta manera la ecuación que buscamos:

2Hallar las ecuaciones paramétricas e implícitas del plano que pasa por los puntos
y
y contiene al vector
.
Primero consideremos al punto
como el punto de referencia que pertenece al plano, posteriormente partiendo de
construyamos un vector dirigido hacia
con la operación
, teniendo así:

que se puede usar como el otro vector director, para que de esta manera podamos sustituir todo en la ecuaciones en su forma paramétrica del plano:

las cuales podemos usar para plantear la siguiente igualdad, y si desarrollamos el determinante obtenemos la ecuación en su forma general:

3Hallar las ecuaciones paramétricas e implícitas del plano que pasa por los puntos
,
y 
Consideremos al punto
como el punto de referencia que pertenece al plano, y partiendo de ahí construyamos a los dos vectores directores usando
y
respectivamente:


Entonces, usando a
como el punto del plano y a los vectores directores construidos, podemos establecer las ecuaciones del plano en su forma paramétrica:

y con esto ya podemos resolver el siguiente determinante (igualado con cero) y conocer a la ecuación del plano en su forma implícita o general:

4Sea
el plano de ecuaciones paramétricas:

Se pide comprobar si los puntos
y
pertenecen al plano.
Primero encontremos a la ecuación del plano, desarrollando el determinante siguiente:

Ahora que ya tenemos la ecuación del plano, sustituyamos los puntos
y
para saber si pertenecen al plano o no:


concluyendo que al darnos un resultado distinto de cero, entonces ninguno pertenece al plano.
5Hallar la ecuación segmentaria del plano que pasa por los puntos
,
y 
Tomamos a el punto
como el punto de referencia que pasa por el plano y partiendo de él construimos a do vectores dirigidos tanto a
como a
, que nos servirán como vectores directores:
.
.
y con ésta información establecemos la siguiente igualdad para que al desarrollar el determinante conozcamos la ecuación del plano:

Ahora, restando
y dividiendo entre
en ambos lados de la igualdad obtenemos la ecuación segmentaria:
.
6Hallar la ecuación de la recta
, que pasa por el punto
y es perpendicular al plano
.
Por ser la recta perpendicular al plano, el vector normal del plano será el vector director de la recta que pasa por el punto
.
El vector normal del plano se puede obtener de los coeficientes de las variables, es decir
y con esto podemos representar a la ecuación de la recta con la siguiente forma:
.
7Hallar la ecuación del plano que pasa por el punto
y contiene a la recta de ecuación:
.
De la ecuación de la recta obtenemos un punto
y el vector
.
El punto
se puede obtener igualando con cero a cada uno de los denominadores para que la igualdad siempre se cumpla, de esta manera
. El vector normal de la recta se obtiene de los denominadores
.
Ahora construimos al vector director usando
y podemos ocupar a u como el otro vector director:
.
.
Significa que podemos encontrar a la ecuación del plano con el proceso que ya se ha mencionado, quedando el siguiente resultado
.









Apuntes es una plataforma dirigida al estudio y la práctica de las matemáticas a través de la teoría y ejercicios interactivos que ponemos a vuestra disposición. Esta información está disponible para todo aquel/aquella que quiera profundizar en el aprendizaje de esta ciencia. Será un placer ayudaros en caso de que tengáis dudas frente algún problema, sin embargo, no realizamos un ejercicio que nos presentéis de 0 sin que hayáis si quiera intentado resolverlo. Ánimo, todo esfuerzo tiene su recompensa.
Les felicito por su pedagogica web.
Podrian indicarme cual es la formula de las coordenadas del pie de una perpendicular por un punto (X1,Y1) a una recta Ax+By+c=0
Serian tan amables de enviarme dos formulas:
1) Formula de la pendiente de la bisectriz de 45º relacionada con las pendientes de los lados del angulo de 90º.
2) Formulas de las coordenadas del punto/pie de una perpendicular que pasa por el punto P(x0,y0) y una recta Ax+By+c=0.
Gracias de antemano.
M.Angel
En los ejercicios 7 y 8, trazar las rectas que pasan por el punto dado con la pendiente indicada. Dibujar en un mismo sistema de coordenadas.
Hola tu indicación es muy buena, vamos a ir mejorando para un mejor entendimiento.
Me puede ayudar con este problema
la pendiente de una recta que pasa por el punto A(3, 2) es igual a 3/4. situar dos puntos sobre esta recta que disten 5 unidades de A.
con su gráfica mas
Alguien me puede ayudar por favor necesito dar un examen para repasar y no me salen las respuestas
Hola con gusto te ayudamos, podrías mencionar específicamente con cual ejercicio podemos darte una mejor explicación.
Determinar las ecuaciones parametricas del plano x-2y+z-1=0
Hola, me sirvio mucho, con que informacion podria ponerlos como refernecia en mi proyecto?
Hola que bueno que la pagina te ayudo, podrías poner como pagina de internet «Materíal didactico-Superprof».