Elige la opción correcta en cada caso:

 

1Estudia la posición relativa de las rectas r ≡ 3x − y + 1 = 0 y s ≡ 2x − 3y + 5 = 0. En caso de que sean secantes, halla el punto de corte

Los coeficientes de las rectas no son proporcionales:

Así que las rectas son secantes.

Hallemos el punto de intersección de las rectas:

Entonces el punto de intersección de r y s es .

 

2Estudia la posición relativa de las rectas r ≡ 3x − 6y + 4 = 0 y . En caso de que sean secantes, halla el punto de corte.

Pasemos la recta r a forma explícita:

Tenemos las dos rectas en forma explícita. Podemos ver así que las pendientes de ambas rectas coinciden: .

Entonces las rectas son paralelas.

 

3Estudia la posición relativa de las rectas y . En caso de que sean secantes, halla el punto de corte

Pasemos las dos rectas a forma general:

Se verifica que los coeficientes y los términos independientes de las rectas son proporcionales:

Entonces las rectas son coincidentes.

 

4Estudia la posición relativa de las rectas y s ≡ 8x + 2y − 27 = 0. En caso de que sean secantes, halla el punto de corte.

Pasemos la recta r a forma general:

Los coeficientes de las rectas r y s no son proporcionales:

Así que las rectas son secantes.

Hallemos el punto de intersección de las rectas:

Entonces el punto de intersección de las rectas r y s es .

Contesta a las siguientes cuestiones:

 

5Halla el valor de a para que las rectas r ≡ x − 2y + 3 = 0 y s ≡ ax + y − 2 = 0 no tengan ningún punto en común.

a =

Para que las rectas r y s no tengan ningún punto en común, ambas deben ser paralelas. Sabemos que si los coeficientes de las rectas son proporcionales, las rectas son paralelas. Imponemos esta condición y despejamos el valor de a:

6Halla el valor de a y b para que las rectas r ≡ ax + 3y + 6 = 0 y s ≡ 2x + 6y − b = 0 sean coincidentes.

a = , b =

Para que las rectas sean coincidentes, los coeficientes y términos independientes tienen que ser proporcionales. Imponemos la condición y despejamos los valores de a y b.

7Halla el valor de a para que las rectas y s ≡ 3x + ay − 4 = 0 sean secantes.

a ≠

En primer lugar, pasamos la recta r a forma general:

Para que las rectas r y s sean secantes, sus coeficientes no pueden ser proporcionales, es decir:

Entonces las rectas son secantes si .

 

8Halla el valor de a para que las rectas r ≡ (x, y) = (−1, 4) + t (a, 8) y s ≡ (x, y) = (5, −2) + t (2, −4) sean paralelas.

a =

Para que las rectas sean paralelas, sus pendientes tienen que coincidir.

Sabemos que la pendiente de una recta se puede calcular a partir de su vector director de la siguiente manera:

Si

Calculemos las pendientes de las rectas r y s:

Igualamos las pendientes y despejamos el valor de a:

Si tienes dudas puedes consultar la teoría

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (No Ratings Yet)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido