La función es positiva

 

Si la función es positiva en un intervalo [a, b] entonces la gráfica de la función está por encima del eje de abscisas. El área de la función viene dada por:

Para hallar el área seguiremos los siguientes pasos:

1º Se calculan los puntos de corte con con el eje OX, haciendo f(x) = 0 y resolviendo la ecuación.

2º El área es igual a la integral definida de la función que tiene como límites de integración los puntos de corte.

 

Calcular área del recinto limitado por la curva y = 4x − x2

 

Calcular el área del recinto limitado por la curva y = 4x − x2 y el eje OX.

En primer lugar hallamos los puntos de corte con el eje OX para representar la curva y conocer los límites de integración.

En segundo lugar se calcula la integral:

 

Hallar el área de la región del plano encerrada por la curva

 

Hallar el área de la región del plano encerrada por la curva y = ln x entre el punto de corte con el eje OX y el punto de abscisa x = e.

 

 

En primer lugar calculamos el punto de corte con el eje de abscisas.

 

 

 

 

 

 

 

La función es negativa

 

Si la función es negativa en un intervalo [a, b] entonces la gráfica de la función está por debajo del eje de abscisas. El área de la función viene dada por un viene dada por:

 

Calcular área del recinto por la curva y = x2 − 4x

Calcular el área del recinto limitado por la curva y = x2 − 4x y el eje OX.

 

 

 

 

 

Hallar el área limitada por la curva y = cos x y el eje Ox entre π/2 y 3π/2.

 

Hallar el área limitada por la curva y = cos x y el eje Ox entre π/2 y 3π/2.

 

 

 

La función toma valores positivos y negativos

 

 

En ese caso el el recinto tiene zonas por encima y por debajo del eje de abscisas. Para calcular el área de la función seguiremos los siguientes pasos:

 

1º Se calculan los puntos de corte con con el eje OX, haciendo f(x) = 0 y resolviendo la ecuación.

 

2º Se ordenan de menor a mayor las raíces, que serán los límites de integración.

 

3º El área es igual a la suma de las integrales definidas en valor absoluto de cada intervalo.

 

Área comprendida entre dos funciones

 

El área comprendida entre dos funciones es igual al área de la función que está situada por encima menos el área de la función que está situada por debajo.

 

 

 

 

 

Área de las regiones del plano limitada por la curva f(x) = x3 − 6x2 + 8x

 

Calcular el área de las regiones del plano limitada por la curva f(x) = x3 − 6x2 + 8x y el eje OX.

 

 

 

 

 

El área, por razones de simetría, se puede escribir:

 

 

Calcular el área del círculo de radio r

 

Calcular el área del círculo de radio r.

 

Partimos de la ecuación de la circunferencia x² + y² = r².

 

 

El área del círculo es cuatro veces el área del primer cuadrante.

 

 

Calculamos la integral indefinida por cambio de variable.

 

 

 

 

 

 

Hallamos los nuevos límites de integración.

 

 

 

 

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (2 votes, average: 5,00 out of 5)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido