Los/las mejores profesores/as de Matemáticas que están disponibles
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (69 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
25€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (275 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Antonio c
4,9
4,9 (52 opiniones)
Antonio c
14€
/h
Gift icon
¡1a clase gratis!
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (69 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
25€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (275 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Antonio c
4,9
4,9 (52 opiniones)
Antonio c
14€
/h
Gift icon
¡1a clase gratis!
Vamos

Área bajo la curva de una función que toma valores positivos

Si la función toma valores positivos en un intervalo entonces la gráfica de la función está por encima del eje de abscisas. El área de la función viene dada por:

Para hallar el área seguiremos los siguientes pasos:

1 Se calculan los puntos de corte con con el eje , haciendo y resolviendo la ecuación.

2 El área es igual a la integral definida de la función que tiene como límites de integración los puntos de corte.

Ejemplos de áreas limitadas por funciones positivas

1 Calcular el área limitado por la curva y el eje

En primer lugar hallamos los puntos de corte con el eje para representar la curva y conocer los límites de integración, es decir, igualamos la función a cero y las resolvemos.

y

Área bajo la curva de una parábola hacia abajo

Calculamos la integral:


2 Hallar el área de la región del plano encerrada por la curva entre el punto de corte con el eje y el punto de abscisa .

En primer lugar calculamos el punto de corte con el eje de abscisas, es decir, igualamos a cero la función.

Aplicando la exponencial de ambos lados

ya que

finalmente el punto de corte es

Área bajo la curva de una función logaritmo

Ahora vamos a encontrar el área bajo la curva por medio de la siguiente integral, por el método de integración por partes, es decir, :

Entonces,

Área bajo la curva de una función que toma valores negativos

Si la función toma valores negativos en un intervalo entonces la gráfica de la función está por debajo del eje de abscisas. El área de la función viene dada por un viene dada por:

Ejemplos de áreas limitadas por funciones negativas

1 Calcular el área limitado por la curva y el eje

En primer lugar hallamos los puntos de corte con el eje para representar la curva y conocer los límites de integración, es decir, igualamos la función a cero y las resolvemos.

y

Área bajo la curva de una parábola hacia arriba

Calculamos la integral:


2 Hallar el área limitada por la curva y el eje entre y .

Área bajo la curva de la función conseno

Resolvemos la integral:

Área de una función que toma valores positivos y negativos

Área bajo la curva dividida en dos intervalos

En ese caso el área tiene zonas por encima y por debajo del eje de abscisas. Para calcular el área de la función seguiremos los siguientes pasos:

1 Se calculan los puntos de corte con con el eje , haciendo y resolviendo la ecuación.

2 Se ordenan de menor a mayor las raíces, que serán los límites de integración.

3 El área es igual a la suma de las integrales definidas en valor absoluto de cada intervalo.

Ejemplo

2 Calcular el área de las regiones del plano limitada por la curva y el eje .

En primer lugar hallamos los puntos de corte con el eje para representar la curva y conocer los límites de integración, es decir, igualamos la función a cero y las resolvemos.

y

Área bajo la curva de una función simétrica

Observando la gráfica tenemos que calcular dos integrales una para la función que toma valores positivos en el intervalo y otra para la función que toma valores negativos en el intervalo .

La gráfica es simétrica, por lo tanto el área se puede escribir como:

Área comprendida entre dos funciones

El área comprendida entre dos funciones es igual al área de la función que está situada por encima menos el área de la función que está situada por debajo.

Área bajo la curva entre dos funciones  Área bajo la curva entre dos funciones

Calcular el área del círculo de radio r

Partimos de la ecuación de la circunferencia .

Área delimitada por un círculo

El área del círculo es cuatro veces el área del primer cuadrante.

Calculamos la integral indefinida por cambio de variable:

Entonces,

Hallamos los nuevos límites de integración.

Finalmente,

Cómo la gráfica es simétrica:

¿Te ha gustado este artículo? ¡Califícalo!

4,16 (19 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗