Los/las mejores profesores/as de Matemáticas que están disponibles
Amin
5
5 (334 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (69 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
22€
/h
Gift icon
¡1a clase gratis!
Loana
5
5 (65 opiniones)
Loana
15€
/h
Gift icon
¡1a clase gratis!
Pedro
5
5 (133 opiniones)
Pedro
15€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
17€
/h
Gift icon
¡1a clase gratis!
Amin
5
5 (334 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (69 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
22€
/h
Gift icon
¡1a clase gratis!
Loana
5
5 (65 opiniones)
Loana
15€
/h
Gift icon
¡1a clase gratis!
Pedro
5
5 (133 opiniones)
Pedro
15€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
17€
/h
Gift icon
¡1a clase gratis!
Vamos

Definición de integrales de funciones racionales

En la integración de funciones racionales se trata de hallar la integral , siendo y polinomios.

En primer lugar, supondremos el grado de es menor que el de , si no fuera así se dividiría.

es el cociente y el resto de la división polinómica.

Una vez que sabemos que el denominador tiene mayor grado que numerador, descomponemos el denominador en factores.

Dependiendo de las raíces del denominador nos encontramos con los siguientes casos:

El denominador tiene sólo raíces reales simples

Tener raíces significa tener factores lineales que no se repiten, es decir,

La fracción puede escribirse así:

y son números que se obtienen efectuando la suma e identificando coeficientes o dando valores a .

Ejemplo

Como el grado del denominador es menor que el grado del numerador comenzamos por descomponer el denominador en factores

Se efectúa la suma:

Como las dos fracciones tienen el mismo denominador, los numeradores han de ser iguales:

Calculamos los coeficientes de y dando a la los valores que anulan al denominador.

Se calculan las integrales de las fracciones simples:

Haciendo cambios de variables respectivamente , y , para finalmente aplicar la integral inmediata

Otra forma de hallar los coeficientes es realizando las operaciones e igualando coeficientes.

Igualamos coeficientes:


Resolviendo el sistema encontramos el valor de , sustituyendolo en las primeras dos ecuaciones tenemos:

Para finalmente, encontrar los valores y .

El denominador tiene raíces reales simples y con repetición

En este caso podríamos tener factores de la siguiente forma:

La fracción puede escribirse así:

y son números que se obtienen efectuando la suma e identificando coeficientes o dando valores a .

Ejemplo

Como el grado del denominador es menor que el grado del numerador comenzamos por descomponer el denominador en factores

Se efectúa la suma:

Como las dos fracciones tienen el mismo denominador, los numeradores han de ser iguales:

Calculamos los coeficientes de y realizando las operaciones e igualando coeficientes.

Igualamos coeficientes:


Resolviendo el sistema encontramos el valor de , sustituyendolo en la segunda ecuación tenemos:


Para finalmente, encontrar el valor de C:

.

Se calculan las integrales de las fracciones:

La 1er integral es una integral de potencias y haciendo cambios de variables respectivamente para la 2da y 3er integral y , para finalmente aplicar las integrales inmediatas

El denominador tiene raíces complejas y simples

En este caso tenemos factores de la forma:

La fracción puede escribirse así:

y son números a determinar.

Ejemplo

Como el grado del denominador es menor que el grado del numerador comenzamos por descomponer el denominador en factores

Se efectúa la suma:

Como las dos fracciones tienen el mismo denominador, los numeradores han de ser iguales:

Calculamos los coeficientes de y realizando las operaciones e igualando coeficientes.

Igualamos coeficientes:

Resolviendo el sistema encontramos el valor de y , sustituyendo el valor de A en la primera ecuación tenemos:

Se calculan las integrales de las fracciones:

Haciendo cambios de variables respectivamente y , para finalmente aplicar la integral inmediata

¿Te ha gustado este artículo? ¡Califícalo!

4,11 (74 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗