Método de sustitución

El método de integración por sustitución o cambio de variable se basa en la derivada de la función compuesta.

Para cambiar de variable identificamos una parte de lo que se va a integrar con una nueva variable t, de modo que se obtenga una integral más sencilla.

 

Pasos para integrar por cambio de variable

Se hace el cambio de variable y se diferencia en los dos términos:

Se despeja u y dx, sutituyendo en la integral:

Si la integral resultante es más sencilla, integramos:

Se vuelve a la variable inical:

Ejemplo

 

Cambios de variables usuales

1.

2.

3.

4.

5. En las funciones racionales de radicales con distintos índices, de un mismo radicando lineal ax + b, el cambio de variable es t elevado al mínimo común múltiplo de los índices.

6. Si es par:

7. Si no es par:

 

Ejemplos

1

2

3

4

5

6

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (3 votes, average: 4,67 out of 5)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido