El método de integración por partes permite calcular la integral de un producto de dos funciones aplicando la fórmula:

Las funciones logarítmicas, "arcos" y polinómicas se eligen como u.

Las funciones exponenciales y trígonométricas del tipo seno y coseno, se eligen como v'.

 

Caso 1

En este primer caso aplicamos la fórmula directamente, tomando la x como u.

 

Caso 2

Si al integrar por partes tenemos un polinomio de grado n, lo tomamos como u y se repite el proceso n veces.

 

Caso 3

Si tenemos una integral con sólo un logaritmo o un "arco", integramos por partes tomando: v' = 1.

 

Caso 4

Si al integrar por partes aparece en el segundo miembro la integral que hay que calcular, se resuelve como una ecuación.

Pasamos la integral del 2º miembro al 1º.

Sumamos las integrales y multiplicamos en los dos miembros por 4/13.

Sacamos factor común e3x.

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (4 votes, average: 4,00 out of 5)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido