El producto mixto —también llamado triple producto escalar— únicamente puede definirse para vectores en el espacio cartesiano. Si y son vectores en el espacio cartesiano su producto mixto, representado como , se define como el producto escalar del primer vector por el vector resultante del producto vectorial de y :

Los/las mejores profesores/as de Matemáticas que están disponibles
Amin
5
5 (334 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (69 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
22€
/h
Gift icon
¡1a clase gratis!
Pedro
5
5 (133 opiniones)
Pedro
15€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
17€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (271 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Amin
5
5 (334 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (69 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
22€
/h
Gift icon
¡1a clase gratis!
Pedro
5
5 (133 opiniones)
Pedro
15€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
17€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (271 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Vamos

Cálculo del producto mixto por determinantes

Un método útil para realizar el cálculo del producto mixto consiste en hacer un arreglo matricial con las coordenadas de los vectores y calcular su determinante:

así,

Ejemplo

1 Calcular el producto mixto de los vectores y

Propiedades del producto mixto

1 El producto mixto no varía si se permutan cíclicamente sus factores:

2 Si se intercambia el orden de dos vectores en el producto mixto se obtiene el mismo valor salvo por un signo:

3 Si la triada de vectores no es linealmente independiente, es decir, si agrupando los vectores dos a dos éstos son coplanarios, el producto mixto vale cero.

Representación analítica del volumen de un paralelepípedo

El valor absoluto del producto mixto de tres vectores corresponde al volumen del paralelepípedo que se forma con éstos. Este cuerpo geométrico se forma considerando a cada uno de los vectores como su largo, su ancho y su alto:

paralepipedo

Ejemplo

1 Hallar el volumen del paralelepípedo formado por los vectores

y

Obtención del volumen de un tetraedro a partir del producto mixto

Al seccionar el paralelepípedo en dos prismas de base triangular considerando las diagonales de sus bases superior e inferior, el volumen de cada prisma triangular corresponde a la mitad del volumen del paralelepípedo. Ahora, como el volumen de una pirámide de base triangular (un tetraedro) es un tercio del volumen del prisma triangular que la inscribe, su volumen corresponde a un sexto del volumen del paralelogramo inicial. Por tanto, si se conocen los vectores que forman un paralelepípedo, el volumen del tetraedro que lo forman es igual a un sexto del valor absoluto de su producto mixto.

Por otro lado, si se tienen las coordenadas de los vértices del tetraedro, es posible conocer los tres vectores que lo forman y calcular su volumen:

Ejemplo

1Calcular el volumen del tetraedro cuyos vértices son los puntos

y

¿Te ha gustado este artículo? ¡Califícalo!

4,71 (41 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗