Los/las mejores profesores/as de Matemáticas que están disponibles
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (69 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
25€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (275 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Antonio c
4,9
4,9 (52 opiniones)
Antonio c
14€
/h
Gift icon
¡1a clase gratis!
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (69 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
25€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (275 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Antonio c
4,9
4,9 (52 opiniones)
Antonio c
14€
/h
Gift icon
¡1a clase gratis!
Vamos

Definiciones importantes sobre vectores

Vectores equipolentes

Ejemplo de vectores equipolentes

Dos vectores son equipolentes cuando tienen igual módulo, dirección y sentido.

Vectores libres

Ejemplo de vectores libres

El conjunto de todos los vectores equipolentes entre sí se llama vector libre. Es decir los vectores libres tienen el mismo módulo, dirección y sentido.

Vectores fijos

Vector fijo

Un vector fijo es un representante del vector libre. Es decir, los vectores fijos tienen el mismo módulo, dirección, sentido y origen.

Vectores ligados

Vectores ligados

Los vectores ligados son vectores equipolentes que actúan en la misma recta. Es decir, los vectores fijos tienen el mismo módulo, dirección, sentido y se encuentran en la misma recta.

Vectores opuestos

Ejemplo de vectores opuestos

Los vectores opuestos tienen el mismo módulo, dirección, y distinto sentido.

Vectores unitarios

Vector unitario

Los vectores untario tienen de módulo, la unidad. Esto quiere decir que un vector es unitario si

Para obtener un vector unitario, de la misma dirección y sentido que el vector dado se divide éste por su módulo.

Vectores concurrentes

Ejemplo de vectores concurrentes

Los vectores concurrentes tienen el mismo origen.

Vector de posición

Vector posición

El vector que une el origen de coordenadas con un punto se llama vector de posición del punto .

Vectores linealmente independientes

Varios vectores linealmente independientes

Hay dos formas principales de definir esto. La primera es que varios vectores libres del plano son linealmente independientes si ninguno puede expresarse como una combinación lineal de los demás. La segunda es que varios vectores libres del plano son linealmente independientes si es que si existe una combinación lineal de ellos que sea igual al vector cero, sin que sean cero todos los coeficientes de la combinación lineal. Esto es, los vectores son linealmente independientes si existen números reales no todos cero (al menos algún ) tal que

Vectores linealmente dependientes

Vectores linealmente dependientes

De igual manera hay dos formas principales de definir esto. La primera es que varios vectores libres del plano son linealmente dependientes si alguno puede expresarse como una combinación lineal de los demás. La segunda es que varios vectores libres del plano son linealmente dependientes si la única manera de que una combinación lineal de estos sea igual al vector cero es que todos los coeficientes sean igual al escalar cero. Esto es, tenemos que si se cumple que

entonces esto solo puede pasar si

Vectores ortogonales

Vectores ortogonales

Dos vectores son ortogonales o perpendiculares si su producto escalar es cero. Esto es, los vectores y son ortogonales si y sólo si

.

Vectores ortonormales

Vector ortogonal y normal, ortonormal

Dos vectores y son ortonormales si cumplen los siguiente:

    • Son ortogonales:

  • Son unitarios:

Ejemplos sobre vectores

1. Dado el vector , determinar dos vectores equipolentes a , y , sabiendo que y .

Para resolver este ejercicio, notemos que es el vector posición del punto , y notemos que ( es el origen), esto es, el vector está definido por la diferencia de los puntos que une, así, todo vector equipolente a debe cumplir que el punto final menos el inicial es igual a . Dicho esto, tenemos el punto inicial del vector , , ahora solo debemos encontrar el punto final , eso lo haremos de la siguiente manera

Esto nos dice que . Ahora encontraremos el punto inicial del vector , dado que ya conocemos el final

Esto nos dice que .

2. Calcula las coordenadas de para que el cuadrilátero de vértices: , , y ; sea un paralelogramo.

Nuestro paralelogramo se muestra en la siguiente imagen

Paralelogramo con vectores

Nuestra tarea es encontrar las coordenadas de . Para esto procederemos igual que en el ejercicio anterior. Tenemos que los vectores y deben de ser vectores equipolentes, por lo tanto, tenemos que . Por medio de esta igualdad despejaremos los valores de las coordenadas del punto

Así, nuestro punto es .

3. Si es un vector de componentes , hallar un vector unitario de su misma dirección y sentido.

Para resolver esto primero obtendremos la magnitud de nuestro vector

Nuestro vector deseado es simplemente el vector entre su magnitud, esto es

4. Hallar un vector unitario de la misma dirección que el vector .

Para resolver esto primero obtendremos la magnitud de nuestro vector

Nuestro vector deseado es simplemente el vector entre su magnitud, esto es

.

Notemos que el vector también es unitario, tiene la misma dirección, pero tiene sentido opuesto.

5. Hallar un vector unitario que tenga la misma dirección que el vector

Para resolver esto primero obtendremos la magnitud de nuestro vector

Nuestro vector deseado es simplemente el vector entre su magnitud, esto es

.

Notemos que el vector también es unitario, tiene la misma dirección, pero tiene sentido opuesto.

Encuentra a tu profesor de matemáticas ideal en Madrid gracias a Superprof.

¿Te ha gustado este artículo? ¡Califícalo!

4,30 (126 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗