Temas
¿A qué llamamos vectores linealmente dependientes?
Varios vectores libres del plano () se dice que son linealmente dependientes si hay una combinación lineal de ellos que es igual al vector cero (
), sin que sean cero todos los coeficientes (
) de la combinación lineal.
Nota: El vector cero o vector nulo se refiere a un vector que posee módulo nulo y todas sus componentes son nulas. Se representa como .
Propiedades de vectores linealmente dependientes
1Si varios vectores son linealmente dependientes, entonces al menos uno de ellos se puede expresar como combinación lineal de los demás.
Para ver esto tomemos los vectores linealmente dependientes , ya que son linealmente dependientes entonces podemos escribir:
Ahora restamos el vector a ambos lados de la igualdad y tenemos:
Lo siguiente es dividir todo entre (para esto suponemos que
)
Por último reescribimos y tomamos como para visualizar mejor las cosas, de este modo tenemos:
Por lo que al final llegamos a que efectivamente podemos expresar un vector como combinación lineal de los demás.
También se cumple el recíproco: si un vector es combinación lineal de otros, entonces todos los vectores son linealmente dependientes.
2 Dos vectores son linealmente dependientes si, y sólo si, son paralelos.
Para ver la veracidad de esto tomemos dos vectores y
y supongamos que son paralelos, por lo que existe un número
tal que:
Por lo que podemos restar a ambos lados de la ecuación y tenemos:
Por lo que tenemos una combinación lineal de los vectores y
donde los coeficientes son distintos de cero. Por lo que por definición los vectores son linealmente dependientes.
3 Dos vectores libres y
son linealmente dependientes si sus componentes son proporcionales.
Esto se sigue directamente de la propiedad anterior, ya que las componentes de los vectores son proporcionales si existe un número tal que:
Ejemplo de ejercicio con vectores linealmente dependientes
Determinar los valores de para que sean linealmente dependientes los vectores
,
y
. Escribir
como combinación lineal de
y
, siendo
el valor calculado.
Los vectores son linealmente dependientes si el determinante de la matriz que forman es nulo, es decir que el rango de la matriz es menor que .
Entonces igualamos el determinante a y resolvemos para
Si resolvemos usando la fórmula general para ecuaciones de segundo grado obtenemos que los valores son: y
Para resolver la segunda parte utilizaremos el valor de .
Por lo que tenemos que encontrar dos números y
tales que:
Por lo que tenemos el siguiente sistema:
De la segunda ecuación tenemos que , por lo que si sustituimos ese valor en la tercera ecuación tenemos:
Por lo que tenemos que la combinación lineal es:
La plataforma que conecta profes particulares y estudiantes
Apuntes es una plataforma dirigida al estudio y la práctica de las matemáticas a través de la teoría y ejercicios interactivos que ponemos a vuestra disposición. Esta información está disponible para todo aquel/aquella que quiera profundizar en el aprendizaje de esta ciencia. Será un placer ayudaros en caso de que tengáis dudas frente algún problema, sin embargo, no realizamos un ejercicio que nos presentéis de 0 sin que hayáis si quiera intentado resolverlo. Ánimo, todo esfuerzo tiene su recompensa.
Cuáles de los siguientes conjuntos en P, son linealmente dependientes (Id)?
a) 3+x+x²,2-x+5x²,4-3x²
b) 1+3x+3x²₁x + 4x²,5 + 6x+3x²,7+2x-x²
Ayuda
Me pueden ayudar resolviendo esto:( ¿Para que valores reales de los siguientes vectores forman un conjunto
Linealmente dependiente en R3
v1= (,0,-4) , v2 = (-1, ,17) , v3 = (0,-1, ─ 8)
por favor
Quiero comprarbar si son dependientes o independiente W
2,-1,4,1) v (5,7-5,8) u (-1,3,4,7) e(2,8-4,1)
EL VECTOR CANONICO 0=(0,0,0) PUEDE SER LINEALMENTE DEPENDIENTE,, eXPLIQUE MEDIANTE UN EJEMPLO…POR FAVOR ME PUEDEN AYUDAR…
Dados los vectores v1 = (1, 1, 0, m), v2 = (3, −1, n, −1) y v3 = (−3, 5, m, −4) hallar
los valores de m y n para que dichos vectores sean linealmente dependiente.
Hola quiero saber que Calcular el valor de m para que los vectores =(1,-1,2) =(2,0,1) y =(4,-2,m) sean linealmente independientes. por favor
Difinicion de vectores linealmente independientes
Me pueden ayudar
Determine si el conjunto de vectores dado es linealmente dependiente o independiente
En C[0, 1] : x, √x, √3 x
me pueden ayudar
Para que valores de c son «linealmente independientes» los vectores
(1-c, 1+c) y (1+c, 1-c)
me pueden ayudar porfavor? Cuál es el valor de k para que los siguientes vectores sean linealmente dependientes: V=(k,-1/2,-1/2); v1=(-1/2,k,-1/2); v2=(-1/2,-1/2,k)