Sea un vector diferente de cero, dicho vector tiene alguna magnitud, dirección y sentido. En muchas ocasiones por razones de simplificación de cálculos, es necesario generar a otro vector que tenga la misma dirección y sentido que
, pero con magnitud uno (unitario), por esta razón hacemos uso de un proceso llamado normalización.
Normalizar un vector
Normalizar, consite en tomar a un vector distinto de cero, y con él obtener un vector
, de la misma dirección y sentido que
pero con magnitud uno.
- Primero tomamos a un vector
diferente de cero
- Ahora calculamos su magnitud ( la cual debe ser diferente de cero)
- Mutiplicamos a
por el recíproco de la magnitud, y el vector que nos queda es
Comprobemos entonces que la magnitud de es uno.
esto comprueba que el vector obtenido tiene las características deseadas
Ejemplos de problemas de normalización
1Si , hallar un vector unitario de su misma dirección y sentido.
Solución:
entonces
Es importante mencionar que el proceso también es válido para dimensiones , como se analiza en el siguiente ejemplo.
2Si , hallar un vector unitario de su misma dirección y sentido.
Solución:
entonces
La plataforma que conecta profes particulares y estudiantes
Apuntes es una plataforma dirigida al estudio y la práctica de las matemáticas a través de la teoría y ejercicios interactivos que ponemos a vuestra disposición. Esta información está disponible para todo aquel/aquella que quiera profundizar en el aprendizaje de esta ciencia. Será un placer ayudaros en caso de que tengáis dudas frente algún problema, sin embargo, no realizamos un ejercicio que nos presentéis de 0 sin que hayáis si quiera intentado resolverlo. Ánimo, todo esfuerzo tiene su recompensa.
Un vector se encuentra entre los
puntos A(2, 3, 4) y B(1, 1, 1). Halle el
vector unitario paralelo al vector 𝐵𝐴
si un vector tiene de modulo un numero decimal no tiene vectores unitarios
Buenas una pregunta si tengo el plano 2x-3y+z=6 como hago para saber el vector unitario que sea ortogonal al plano que plantie anteriormente
a ver si pueden ayudar, dados los vectores A= -2.00i +3.00j+4.00k y B= 3.00i+1.00j-3.00k, obtenga la magnitud de cada vector, calcule A-B y determine su magnitud,y ¿A+B = B-A?
Me pueden ayudar es de
Un telescopio espacial se encuentra en los puntos de coordenadas (3,4,-5) segundos-luz de
a Tierre y logre divisar una nave desconocida que se encuentra en una posición: (2; -4; 7) seg-
luz con respecto a la neve. Determina:
A. El vector posición de la nave desconocida con respecto al centro de la Tierra.
B. La distancia desde la superficie de la Tierra.
(1 seg-luz = 30000 km; radio de la Tierra = 6.371 km).
La dirección de la nave desconocida expresada en ángulos directores.
No entiendo ayuda porfavor
ENCUENTRE EL VECTOR UNITARIO QUE TENGA LA MISMA DIRECCIÓN Y SENTIDO DEL VECTOR 𝑉𝑊⃗, CUYO PUNTO INCIAL ES V (-2,3,1) Y EL PUNTO FINAL ES W (0,-4,4).
EXPRESE EL VECTOR UNITARIO EN FUNCIÓN DE SUS COMPONENTES Y EN FUNCIÓN DE SUS VECTORES BASE O CANÓNICOS.
Me podrían ayudar..
Encuentra el vector que tiene la misma dirección del vector 〈6,2,-3〉 pero magnitud igual a 4.
que pasa cunado ocurre esto ‖u‖+‖v‖,