Si una función es derivable en un punto x = a, entonces es continua para x = a.

El reciproco es falso, es decir, hay funciones que son continuas en un punto y que, sin embargo, no son derivables.

Ejemplos

Estudiar la continuidad y derivabilidad de las funciones:

1.

En primer lugar estudiamos la continuidad en x = 0.

La función no es continua, por tanto tampoco es derivable.

 

2.

En primer lugar estudiamos la continuidad en x = 0.

La función es continua, por tanto podemos estudiar la derivabilidad.

Como no coinciden las derivadas laterales no es derivable en x = 0.

 

3. f(x) = x² en x = 0.

La función es continua en x = 0, por tanto podemos estudiar la derivabilidad.

En x = 0 la función es continua y derivable.

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (3 votes, average: 3,67 out of 5)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido