Derivada por la izquierda
Decimos que la función
tiene derivada por la izquierda si el siguiente limite existe
La expresión
significa que nos aproximamos al cero con valores negativos.
Derivada por la derecha
Decimos que la función
tiene derivada por la derecha si el siguiente limite existe

La expresión
significa que nos aproximamos al cero con valores positivos.
Al momento de comprobar si una función es derivable en un punto podemos utilizar el siguiente criterio.
Una función es derivable en un punto si, y sólo si, es derivable por la izquierda y por la derecha en dicho punto y las derivadas laterales coinciden.
Derivada de las funciones a trozos
En las funciones definidas a trozos es necesario estudiar las derivadas laterales en los puntos de separación de los distintos trozos.
Ejemplos
1 Estudiar la derivabilidad de la función 
La función valor absoluto se puede expresar de la siguiente forma
Al calcular sus derivadas laterales obtenemos lo siguiente,
Puesto que las derivadas laterales en
son distintas, la función no es derivable en dicho punto.

Las derivada laterales no coinciden en los picos ni en los puntos angulosos de las funciones. Por tanto en esos puntos no existe la derivada.
2 Estudiar la derivabilidad de la función:
Al calcular sus derivadas laterales obtenemos lo siguiente,
No es derivable en
. Dado que sus derivadas laterales no coinciden.










Apuntes es una plataforma dirigida al estudio y la práctica de las matemáticas a través de la teoría y ejercicios interactivos que ponemos a vuestra disposición. Esta información está disponible para todo aquel/aquella que quiera profundizar en el aprendizaje de esta ciencia. Será un placer ayudaros en caso de que tengáis dudas frente algún problema, sin embargo, no realizamos un ejercicio que nos presentéis de 0 sin que hayáis si quiera intentado resolverlo. Ánimo, todo esfuerzo tiene su recompensa.
La descripcion es erronea donde da la derivada de arcocotangente, ya que dice derivada de arcotangete, se comieron el co, lo que puede llevar a confunciones, como en mi caso que pense que era la derivada de la inversa de tangente, cuando era la derivada de la inversa de cotangente.
Hola entendemos la confusión, pero como sabes en cada lugar toman la notación en forma diferente, en este caso se tomo arccot(x) donde se repite la c para diferenciar de arctan(x).
me pueden ayudar encontrar la derivada de : y=7 elevado a la 4 + e elevado a la x-4 – ln X + 100
Medio tarde me parece mi respuesta, pero simplemente tenes que derivar cada termino independientemente:
7^4=(7.4)^3
e^x-4=e^x-4 (por formula)
lnx=1/x
100=0 (Derivando una constante en terminos de x)
Excelente contenido. Creo es posible mejorar el contenido para que sea más didáctico con más ejemplos, partiendo de lo elemental a lo complejo, para que el texto pueda ser más entendible para estudiantes de secundaria en Costa Rica.
Excelente artículo y muy dinámico.
Agradecemos tu comentario, la verdad estamos trabajando mucho para lograr tener las mejores explicaciones para que sea mas entendible al publico y para ello lo que ustedes recomienden nos ayuda en gran forma, esperamos que en un futuro seamos mejores siguiendo sus sugerencias, otra vez gracias.
Hola: El últipo ejercicio de aplicación me parece que es incorrecto ya que no está obteniendo la derivada del volumen del cono
Hola si te refieres al triángulo que gira, si se derivo el volumen, si estoy equivocado por favor indícamelo.