Máximos y mínimos

Si f es derivable en a, a es un extremo relativo o local si:

1. Si f'(a) = 0.

2. Si f''(a) ≠ 0.

Máximos locales

Si f y f' son derivables en a, a es un máximo relativo o local si se cumple:

1. f'(a) = 0

2. f''(a) < 0

Mínimos locales

Si f y f' son derivables en a, a es un mínimo relativo o local si se cumple:

1. f'(a) = 0

2. f''(a) > 0

 

Cálculo de máximos y mínimos

Estudiar los máximos y mínimos de:

f(x) = x³ − 3x + 2

Para hallar sus extremos locales, seguiremos los siguientes pasos:

1. Hallamos la derivada primera y calculamos sus raíces.

f'(x) = 3x² − 3 = 0

x = −1 x = 1.

2. Realizamos la 2ª derivada, y calculamos el signo que toman en ella los ceros de derivada primera y si:

f''(x) > 0 Tenemos un mínimo

f''(x) < 0 Tenemos un máximo

f''(x) = 6x

f''(−1) = −6 Máximo

f'' (1) = 6 Mínimo

3. Calculamos la segunda coordenada de los extremos relativos en la función.

f(−1) = (−1)³ − 3(−1) + 2 = 4

f(1) = (1)³ − 3(1) + 2 = 0

Máximo(−1, 4) Mínimo(1, 0)

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (4 votes, average: 5,00 out of 5)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido