Temas

 

Cuando h tiende a 0, el punto Q tiende a confundirse con el P. Entonces la recta secante tiende a ser la recta tangente a la función f(x) en P, y por tanto el ángulo α tiende a ser β.

La pendiente de la tangente a la curva en un punto es igual a la derivada de la función en ese punto.

mt = f'(a)

 

Ejemplo

Dada la parábola f(x) = x², hallar los puntos en los que la recta tangente es paralela a la bisectriz del primer cuadrante.

La bisectriz del primer cuadrante tiene como ecuación y = x, por tanto su pendiente es m = 1.

Como las dos rectas son paralelas tendrán la misma pendiente, así que:

f'(a) = 1.

Porque la pendiente de la tangente a la curva es igual a la derivada en el punto x = a.

La segunda coordenada del punto la obtenemos sustituyendo el valor de a en la función f(x) = x²

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (2 votes, average: 2,50 out of 5)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido