• Teorema de Rolle: si una función es continua y derivable en un intervalo y toma valores iguales en sus extremos, existe un punto donde la derivada primera se anula.

 

Si una función es:

Continua en [a, b]

Derivable en (a, b)

Y si f(a) = f(b)

Entonces, existe algún punto c ∈ (a, b) en el que f'(c) = 0.

La interpretación gráfica del teorema de Rolle nos dice que hay un punto en el que la tangente es paralela al eje de abscisas.

 

Ejemplos

1. Estudiar si se verifica el teorema de Rolle en el intervalo [0, 3] de la función:

En primer lugar comprobamos que la función es continua en x = 1.

En segundo lugar comprobamos si la función es derivable en x = 1.

Como las derivadas laterales no coinciden, la función no es derivable en el intervalo (0, 3) y por tanto no se cumple el teorema de Rolle.

 

2.¿Es aplicable el teorema de Rolle a la función f(x) = ln (5 − x²) en el intervalo [−2, 2]?

En primer lugar calculamos el dominio de la función.

La función es continua en el intervalo [−2, 2] y derivable en (−2, 2), porque los intervalos están contenidos en .

Además se cumple que f(−2) = f(2), por tanto es aplicable el teorema de Rolle.

 

3.Comprobar que la ecuación x7 + 3x + 3 = 0 tiene una única solución real.

La función f(x) = x7 + 3x + 3 es continua y derivable en ·

f(−1) = −1

f(0) = 3

Por tanto la ecuación tiene al menos una solución en el intervalo (−1, 0).

Teorema de Rolle

f' (x) = 7x6 + 3

Como la derivada no se anula en ningún valor está en contradicción con el teorema de Rolle, por tanto sólo tiene una raíz real.

4.  ¿Es aplicable el teorema de Rolle a la función f(x) = |x − 1| en el intervalo [0, 2]?

La función es continua en [0, 2].

No es aplicable el teorema de Rolle porque la solución no es derivable en el punto x = 1.

 

5. Estudiar si la función f(x) = x − x3 satisface las condiciones del teorema de Rolle en los intervalos [−1, 0] y [0, 1]. en caso afirmativo determinar los valores de c.

f(x) es una función continua en los intervalos [−1, 0] y [0, 1] y derivable en los intervalos abiertos (−1, 0) y (0, 1) por ser una función polinómica.

Además se cumple que:

f(−1) = f(0) = f(1) = 0

Por tanto es aplicable el teorema de Rolle.

 

6.¿Satisface la función f(x) = 1 − x las condiciones del teorema de Rolle en el intervalo [−1, 1]?

La función es continua en el intervalo [−1, 1] y derivable en (−1, 1) por ser una función polinómica.

No cumple teorema de Rolle porque f(−1) ≠ f(1).

 

7. Probar que la ecuación 1 + 2x + 3x2 + 4x3 = 0 tiene una única solución.

Vamos a demostrarlo por reducción al absurdo.

Si la función tuviera dos raíces distintas x1 y x2, siendo x1< x2 , tendríamos que:

f(x1) = f(x2) = 0

Y como la función es continua y derivable por ser una función polinómica, podemos aplicar el teorema del Rolle, que diría que existe un c  (x1, x2) tal que f' (c) = 0.

f' (x) = 2 + 6x + 12x2 f' (x) = 2 (1+ 3x + 6x2).

Pero f' (x) ≠ 0, no admite soluciones reales porque el discriminante es negativo:

Δ = 9 − 24 < 0.

Como la derivada no se anula en ningún valor está en contradicción con el teorema de Rolle, por lo que la hipótesis de que existen dos raíces es falsa.

 

8. ¿Cuántas raíces tiene la ecuación x3 + 6x2 + 15x − 25 = 0?

La función f(x) = x3 + 6x2 + 15x − 25 es continua y derivable en ·

f(0) = −25

f(2) = 37

Por tanto la ecuación tiene al menos una solución en el intervalo (0, 2).

Teorema de Rolle.

f' (x) = 3x2 + 12x +15

Dado que la derivada no se anula, ya que su discriminante es negativo, la función es estrictamente creciente y posee una única raíz.

 

6.Demostrar que la ecuación 2x3 − 6x + 1 = 0 una única solución real en el intervalo (0, 1).

La función f(x) = 2x3 − 6x + 1 es continua y derivable en ·

f(0) = 1

f(1) = −3

Por tanto la ecuación tiene al menos una solución en el intervalo (0, 1).

Teorema de Rolle.

f' (x) = 6x2 - 6 6x2 - 6 = 0 6(x − 1) (x + 1) = 0

La derivada se anula en x = 1 y x = −1, por tanto no puede haber dos raíces en el intervalo (0, 1).

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (3 votes, average: 5,00 out of 5)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido