Sea f una función continua en un intervalo cerrado [a, b] y toma valores de signo contrario en los extremos, entonces existe al menos un c ∈ (a, b) tal que f(c) = 0.

Ejemplos

Comprobar que la ecuación x³ + x − 1 = 0 tiene al menos una solución real en el intervalo [0,1].

Consideramos la función f(x) = x³ + x − 1, que es continua en [0,1] por ser polinómica. Estudiamos el signo en los extremos del intervalo:

f(0) = −1 < 0

f(1) = 1 > 0

Como los signos son distintos se cumple el teorema de Bolzano, por tanto existe un c ∈ (0. 1) tal que f(c) = 0. Lo que demuestra que tiene una solución en ese intervalo.

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (2 votes, average: 4,50 out of 5)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido