Los/las mejores profesores/as de Matemáticas que están disponibles
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (69 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
25€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (275 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Antonio c
4,9
4,9 (52 opiniones)
Antonio c
14€
/h
Gift icon
¡1a clase gratis!
Amin
5
5 (337 opiniones)
Amin
15€
/h
Gift icon
¡1a clase gratis!
José angel
4,9
4,9 (104 opiniones)
José angel
7€
/h
Gift icon
¡1a clase gratis!
Francisco javier
4,9
4,9 (69 opiniones)
Francisco javier
15€
/h
Gift icon
¡1a clase gratis!
Santiago
5
5 (32 opiniones)
Santiago
18€
/h
Gift icon
¡1a clase gratis!
Agustina
5
5 (55 opiniones)
Agustina
25€
/h
Gift icon
¡1a clase gratis!
Jose
5
5 (33 opiniones)
Jose
18€
/h
Gift icon
¡1a clase gratis!
Florencia
5
5 (275 opiniones)
Florencia
20€
/h
Gift icon
¡1a clase gratis!
Antonio c
4,9
4,9 (52 opiniones)
Antonio c
14€
/h
Gift icon
¡1a clase gratis!
Vamos

Enunciado del Teorema de Pitágoras

El Teorema de Pitágoras establece lo siguiente:

En todo triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.

Triángulo rectángulo

Del enunciado anterior se desprende la siguiente fórmula con la cual podemos calcular la magnitud de cada una de los lados de un triángulo rectángulo

Aplicaciones del teorema de Pitágoras

Calculando la hipotenusa.

1 Conociendo los dos catetos podemos calcular la hipotenusa, solo debemos despejar la variable de la ecuación

Lo hacemos simplemente sacando raíz cuadrada

Ejemplo: Los catetos de un triángulo rectángulo miden en y respectivamente. ¿Cuánto mide la hipotenusa?

Cálculo de la hipotenusa

En este caso tenemos que    y debemos encontrar el valor de

Reemplazando en la fórmula anterior

Por tanto la hipotenusa mide  

Calculando un cateto.

2 Conociendo la hipotenusa y un cateto, podemos calcular el otro cateto.

De nuestra ecuación inicial podemos despejar el valor de uno de los catetos y obtenemos lo siguiente para el cateto

y para el cateto

Ejemplo: La hipotenusa de un triángulo rectángulo mide y uno de sus catetos ¿Cuánto mide otro cateto?

Cálculo de un cateto

De acuerdo con la figura, tenemos que el cateto mide , la hipotenusa y hace falta encontrar el cateto . Así pues, utilizando la fórmula para calcular catetos,

Por lo tanto el cateto mide

Clasificar triángulos rectángulos.

3. Conociendo los lados de un triángulo, podemos averiguar si es rectángulo o no.

Para que un triángulo sea rectángulo el cuadrado de lado mayor ha de ser igual a la suma de los cuadrados de los dos menores.

Ejemplo: Determinar si el siguiente triángulo es rectángulo.

Clasificación triángulos rectángulos

Notemos que el lado mayor de este triángulo tiene longitud Continuando con la indicación anterior, habremos de verificar las siguientes igualdades

Ya que obtenemos el mismo resultado en ambos lados de la igualdad, podemos concluir que el triángulo es rectángulo.

Ejercicios

1

Un triángulo rectángulo isósceles tiene hipótenusa de 10 m de longitud. ¿Cuál es la longitud de sus catétos?

Aplicacion teorema de pitagoras

Solución

Como el triángulo es rectángulo e isósceles, entonces sus dos catétos son iguales. Aplicamos el Teorema de Pitágoras para el triángulo con hipótenusa   y lado

 

 

Resolviendo algebraicamente, se obtiene

 

 

Así, los catetos miden

2

Una escalera de 10 m de longitud está apoyada sobre la pared. El pie de la escalera dista 6 m de la pared. ¿Qué altura alcanza la escalera sobre la pared?

Altura de una escalera

Solución

La escalera, la pared y el piso forman un triángulo rectángulo, en el cual podemos tomar como hipotenusa la longitud de la escalera y como uno de los catetos la longitud del pie de la escalera hasta la pared. Entonces    y  

 

Nuestro objetivo es entonces, calcular la altura de escalera sobre la pared, es decir, calcular el cateto restante. De acuerdo con nuestras fórmulas anteriores y la figura, tenemos que

 

3

Hallar el área del triángulo equilátero:

altura de un triángulo equilatero

Solución

Primero trazamos la altura del triángulo equilátero. Dicha altura divide el triángulo en dos triángulos rectángulos de catetos la altura del triángulo equilátero, la mitad de uno de los lados del triángulo y finalmente con hipotenusa , uno de los lados del triángulo inicial.De esta forma para hallar la altura solo debemos aplicar nuestra fórmula anterior para hallar catetos de triángulos rectángulo, lo que nos da

 

 

 

Dado que el área de un triángulo se obtiene a través de la fórmula

 

 

Observemos ahora, que la base del triángulo es de    y la altura de  

 

Luego, remplazando en la fórmula del área se sigue que

 

4

Hallar la diagonal del cuadrado:

Calcular la diagonal de un cuadrado

Solución

La diagonal del cuadrado cuyos lados miden    divide al dicha figura en dos triángulos rectángulos, donde la diagonal    coincide con la hipotenusa de cualquiera de estos triángulos. Es decir, debemos hallar la hipotenusa de un triángulo rectángulo con catetos igual a  


Para ello utilizaremos la fórmula para la hiptenusa:

 

 

Finalmente, la diagonal mide

5

Hallar la diagonal del rectángulo:

Calcular la diagonal de un rectángulo

Solución

De manera similar al ejercicio anterior, la diagonal de este rectángulo lo divide en dos triángulos rectángulos de catetos de    y    y la diagonal coincide con la hipotenusa de estos triángulos. Así que de nuevo debemos usar la fórmula para calcular la hipotenusa:


 

Por lo tanto, la diagonal tiene longitud

6

Hallar el perímetro y el área del trapecio rectángulo:

Perimetro de un trapecio

Solución

El perímetro del trapecio es la suma de la longitud de sus lados. De la figura se sigue que el lado superior del trapecio mide    el lado inferior mide    y la altura del trapecio mide  Para hallar el lado diagonal del trapecio, que llamaremos     debemos considerar el triángulo rectángulo de lado vertical    lado horizontal    e hipotenusa    Dado que necesitamos calcular el valor de    utilizaremos la fórmula para calcular la hipotenusa, asi pues tenemos:


 

Finalmente podemos calcular el perímetro, el cual sabemos que es igual a la suma

 

 

Para obtener el área hay que observar que el trapecio está conformado por un triángulos rectángulos y un rectángulo, entonces su área será igual a la suma de las áreas del triángulo y el rectángulo. Es decir,

 

 

El área del rectángulo es sencillamente el producto de su base por su altura, entonces    Para el área del triángulo tenemos que

 

 

 

Por lo tanto

 

7

El perímetro de un trapecio isósceles es de 110 m, las bases miden 40 y 30 m respectivamente. Calcular los lados no paralelos y el área.

Lados de un trapecio regular

Solución

El perímetro del trapecio es igual a la suma de la longitud de sus lados. Entonces tenemos la siguiente igualdaddonde es el valor del lado no paralelo.Despejando de la anterior ecuación, tenemos que De esta forma hemos resuelto la primera parte del problema.

 

Recordemos que el área del trapecio es igual a la suma de las bases, multiplicadas por la altura y luego esto se divide entre dos. Así que debemos calcular la altura del trapecio, que llamaremos  

 

De la figura podemos considerar el triángulo rectángulo de catetos    e hipotenusa    Luego, para hallar el valor de , utilizaremos la fórmula para calcular los catetos,

 

 

Ahora podemos concluir calculando el área del trapecio,

 

8

Hallar el área del pentágono regular:

Teorema de Pitagoras

Solución

Tenemos que los lados del pentágono regular miden    Ya que el área del pentágono es igual a un medio del perímetro por el valor del apotema, entonces debemos encontrar el valor del apotema. Llamaremos al apotema tal como se ilustra en la figura. Para calcular consideremos el triángulo de catetos e hipotenusa Y utilizamos la fórmula para calcular catetos, entonces:


 

El valor del perímetro del pentágono es

 

Finalmente, podemos calcular el área del pentágono

 

9

Calcular el área del cuadrado inscrito en una circunferencia de longitud 18.84 m.

Teorema de Pitagoras

Solución

Ya que el cuadrado esta inscrito una circunferencia, entonces podemos dividirlo en triángulos rectángulos de catetos igual al radio del a circunferencia, , e hiputenusa .De esta forma podemos calcular el lado del triángulo utilizando la fórmula para calcular hipotenusas,

 

.

 

Por lo tanto, como el área del cuadrado es    se sigue que es igual a  

10

En una circunferencia una cuerda mide 48 cm y dista 7 cm del centro. Calcular el área del círculo.

Teorema de Pitagoras

Solución

Para calcular el área del circulo debemos primero encontrar su radio. Ya que la cuerda del circulo dista    del centro, podemos formar un triángulo rectángulo de catetos , la mitad de la cuerda, e hipotenusa igual al radio del circulo, . De esta forma, para hallar el radio debemos utilizar la fórmula para calcular hipitenusas.


 

Así, el area del círculo es

 

¿Te ha gustado este artículo? ¡Califícalo!

4,25 (369 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗