1. f(x) es un infinito de orden superior a g(x) si:

2. f(x) es un infinito de orden inferior a g(x) si:

3. f(x) es un infinito de igual orden a g(x) si:

Dadas dos potencias de x, la de mayor exponente es un infinito de orden superior.

Dadas dos funciones exponenciales de base mayor que 1, la de mayor base es un infinito de orden superior.

Cualquier función exponencial de base mayor que 1 es un infinito de orden superior a cualquier potencia de x.

Las potencias de x son infinitos de orden superior a las funciones logarítmicas.

Dos polinomios del mismo grado o dos exponenciales de la misma base son infinitos del mismo orden.

Ejemplos

Hallar los límites por comparación de infinitos:

1.

2.

3.

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (2 votes, average: 1,00 out of 5)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido