Respecto del eje de ordenadas. Función par

Una función f es simétrica respecto del eje de ordenadas cuando para todo x del dominio se verifica:

f(−x) = f(x)

Las funciones simétricas respecto del eje de ordenadas reciben el nombre de funciones pares.

Ejemplo

Comprobar que la siguiente función es par:

Superprof

Simetría respecto al origen. Función impar

Una función f es simétrica respecto al origen cuando para todo x del dominio se verifica:

f(−x) = −f(x)

Las funciones simétricas respecto al origen reciben el nombre de funciones impares.

Ejemplo

Comprobar que la siguiente función es impar:

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (25 votes, average: 3,84 out of 5)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido

2
Publicar un comentario

avatar
  S’abonner  
Notifier de
Arjona
Arjona
Invité
25 May.

Y si me piden también que aparte de dibujar una funcion par, f(3)=1? Como se relizaria eso?

Superprof
Superprof
Administrateur
16 Jun.

Hola, escríbenos el enunciado completo del problema con cual tienes dificultad y te contestaremos lo más rápido posible. ¡Un saludo!