Temas

Si una función es continua en el intervalo [a, b] y k es un número comprendido entre los valores f(a) y f(b), entonces existe algún c en (a, b) tal que f(c) = k.

También podemos definir la propiedad de Darboux de este otro modo:

Si una función es continua en el intervalo [a, b] la función alcanza en este intervalo todos los valores comprendidos entre f(a) y f(b).

Ejemplo

Probar que la función f(x) = x(sen x + 1) toma el valor 2.

La función es continua en toda por ser el producto de dos funciones continuas.

Tomamos el intervalo y estudiamos el valor de las imágenes de los extremos:

Por tanto existe un c ∈ tal que f(c) = 2.

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (1 votes, average: 5,00 out of 5)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido